Abstract
In this paper, we consider the sparse linear complementarity problem, denoted by k-LCP: the coefficient matrices are restricted to have at most k nonzero entries per row. It is known that the 1-LCP is solvable in linear time, and the 3-LCP is strongly NP-hard. We show that the 2-LCP is strongly NP-hard, and it can be solved in polynomial time if it is sign-balanced, i.e., each row of the matrix has at most one positive and one negative entry. Our second result matches the currently best-known complexity bound for the corresponding sparse linear feasibility problem. In addition, we show that an integer variant of the sign-balanced 2-LCP is weakly NP-hard and pseudo-polynomially solvable, and the generalized 1-LCP is strongly NP-hard.
Original language | English |
---|---|
Pages (from-to) | 1015-1026 |
Number of pages | 12 |
Journal | Mathematics of Operations Research |
Volume | 40 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2015 Nov |
Externally published | Yes |
Keywords
- Combinatorial algorithm
- Linear complementarity problem
- NP-hardness
- Polynomial solvability
- Two-variable constraints
ASJC Scopus subject areas
- Mathematics(all)
- Computer Science Applications
- Management Science and Operations Research