The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study

W. M.C. Sameera, Miho Hatanaka, Taku Kitanosono, Shu Kobayashi, Keiji Morokuma

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Density functional theory (DFT), combined with the artificial force-induced reaction (AFIR) method, is used to establish the mechanism of the aqueous Mukaiyama aldol reactions catalyzed by a chiral Fe(II) complex. On the bases of the calculations, we identified several thermodynamically stable six- or seven-coordinate complexes in the solution, where the high-spin quintet state is the ground state. Among them, the active intermediates for the selectivity-determining outer-sphere carbon-carbon bond formation are proposed. The multicomponent artificial force-induced reaction (MC-AFIR) method found key transition states for the carbon-carbon bond formation, and explained the enantioselectivity and diastereoselectivity. The overall mechanism consists of the coordination of the aldehyde, carbon-carbon bond formation, the rate-determining proton transfer from water to aldehyde, and dissociation of trimethylsilyl group. The calculated full catalytic cycle is consistent with the experiments. This study provides important mechanistic insights for the transition metal catalyzed Mukaiyama aldol reaction in aqueous media. (Chemical Equation Presented).

Original languageEnglish
Pages (from-to)11085-11094
Number of pages10
JournalJournal of the American Chemical Society
Volume137
Issue number34
DOIs
Publication statusPublished - 2015 Sep 2

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study'. Together they form a unique fingerprint.

  • Cite this