TY - JOUR
T1 - The mitochondrial permeability transition contributes to acute ethanol-induced apoptosis in rat hepatocytes
AU - Higuchi, Hajime
AU - Adachi, Masayuki
AU - Miura, Soichiro
AU - Gores, Gregory J.
AU - Ishii, Hiromasa
PY - 2001
Y1 - 2001
N2 - Acute ethanol intoxication induces oxidative stress and apoptosis in primary cultured hepatocytes. Oxidative stress can trigger mitochondrial cytochrome c release initiating the mitochondrial pathway of apoptosis. Based on this information, we formulated the hypothesis that ethanol-induced oxidative stress causes mitochondrial dysfunction resulting in apoptosis. In the present study, we found that the mitochondrial membrane permeability transition (MPT) is essential for induction of mitochondrial cytochrome c release and caspase activation of ethanol. The short-term incubation with ethanol (50 mmol/L) induced the MPT, cytochrome c release, caspase activation, and apoptosis of cultured rat hepatocytes. Hepatocyte apoptosis was prevented by caspase inhibitors (i.e., Z-VAD-fmk, DEVD-cho, and DMQD-cho). An MPT inhibitor, cyclosporin A, also prevented ethanol-induced cytochrome c release, caspase activation, and apoptosis, suggesting that acute ethanol-induced apoptosis is MPT dependent. Ethanol-induced MPT was also attenuated by N′N′-dimethylthiourea (DMTU, a scavenger of hydrogen peroxide, 10 mmol/L) and N-acetyl-cysteine (NAC, an antioxidant, 5 mmol/L). Preventing hepatocyte MPT by DMTU or NAC attenuated cytochrome c release as well as caspase activation, suggesting that ethanol-induced oxidative stress mediates the MPT. Thus, acute ethanol induces MPT via oxidative stress, and the MPT mediates mitochondrial pathway of apoptosis in hepatocytes exposed to acute ethanol.
AB - Acute ethanol intoxication induces oxidative stress and apoptosis in primary cultured hepatocytes. Oxidative stress can trigger mitochondrial cytochrome c release initiating the mitochondrial pathway of apoptosis. Based on this information, we formulated the hypothesis that ethanol-induced oxidative stress causes mitochondrial dysfunction resulting in apoptosis. In the present study, we found that the mitochondrial membrane permeability transition (MPT) is essential for induction of mitochondrial cytochrome c release and caspase activation of ethanol. The short-term incubation with ethanol (50 mmol/L) induced the MPT, cytochrome c release, caspase activation, and apoptosis of cultured rat hepatocytes. Hepatocyte apoptosis was prevented by caspase inhibitors (i.e., Z-VAD-fmk, DEVD-cho, and DMQD-cho). An MPT inhibitor, cyclosporin A, also prevented ethanol-induced cytochrome c release, caspase activation, and apoptosis, suggesting that acute ethanol-induced apoptosis is MPT dependent. Ethanol-induced MPT was also attenuated by N′N′-dimethylthiourea (DMTU, a scavenger of hydrogen peroxide, 10 mmol/L) and N-acetyl-cysteine (NAC, an antioxidant, 5 mmol/L). Preventing hepatocyte MPT by DMTU or NAC attenuated cytochrome c release as well as caspase activation, suggesting that ethanol-induced oxidative stress mediates the MPT. Thus, acute ethanol induces MPT via oxidative stress, and the MPT mediates mitochondrial pathway of apoptosis in hepatocytes exposed to acute ethanol.
UR - http://www.scopus.com/inward/record.url?scp=0034925049&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034925049&partnerID=8YFLogxK
U2 - 10.1053/jhep.2001.26380
DO - 10.1053/jhep.2001.26380
M3 - Article
C2 - 11481617
AN - SCOPUS:0034925049
VL - 34
SP - 320
EP - 328
JO - Hepatology
JF - Hepatology
SN - 0270-9139
IS - 2
ER -