The project for objective measures using computational psychiatry technology (PROMPT): Rationale, design, and methodology

PROMPT collaborators

Research output: Contribution to journalArticlepeer-review

Abstract

Introduction: Depressive and neurocognitive disorders are debilitating conditions that account for the leading causes of years lived with disability worldwide. However, there are no biomarkers that are objective or easy-to-obtain in daily clinical practice, which leads to difficulties in assessing treatment response and developing new drugs. New technology allows quantification of features that clinicians perceive as reflective of disorder severity, such as facial expressions, phonic/speech information, body motion, daily activity, and sleep. Methods: Major depressive disorder, bipolar disorder, and major and minor neurocognitive disorders as well as healthy controls are recruited for the study. A psychiatrist/psychologist conducts conversational 10-min interviews with participants ≤10 times within up to five years of follow-up. Interviews are recorded using RGB and infrared cameras, and an array microphone. As an option, participants are asked to wear wrist-band type devices during the observational period. Various software is used to process the raw video, voice, infrared, and wearable device data. A machine learning approach is used to predict the presence of symptoms, severity, and the improvement/deterioration of symptoms. Discussion: The overall goal of this proposed study, the Project for Objective Measures Using Computational Psychiatry Technology (PROMPT), is to develop objective, noninvasive, and easy-to-use biomarkers for assessing the severity of depressive and neurocognitive disorders in the hopes of guiding decision-making in clinical settings as well as reducing the risk of clinical trial failure. Challenges may include the large variability of samples, which makes it difficult to extract the features that commonly reflect disorder severity. Trial Registration: UMIN000021396, University Hospital Medical Information Network (UMIN).

Original languageEnglish
Article number100649
JournalContemporary Clinical Trials Communications
Volume19
DOIs
Publication statusPublished - 2020 Sep

Keywords

  • Depression
  • Machine learning
  • Natural language processing
  • Neurocognitive disorder
  • Screening

ASJC Scopus subject areas

  • Pharmacology

Fingerprint Dive into the research topics of 'The project for objective measures using computational psychiatry technology (PROMPT): Rationale, design, and methodology'. Together they form a unique fingerprint.

Cite this