The secreted glycoprotein reelin suppresses the proliferation and regulates the distribution of oligodendrocyte progenitor cells in the embryonic neocortex

Himari Ogino, Tsuzumi Nakajima, Yuki Hirota, Kohki Toriuchi, Mineyoshi Aoyama, Kazunori Nakajima, Mitsuharu Hattori

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Oligodendrocyte (OL) progenitor cells (OPCs) are generated, proliferate, migrate, and differentiate in the developing brain. Although the development of OPCs is prerequisite for normal brain function, the molecular mechanisms regulating their development in the neocortex are not fully understood. Several molecules regulate the tangential distribution of OPCs in the developing neocortex, but the cue molecule(s) that regulate their radial distribution remains unknown. Here, we demonstrate that the secreted glycoprotein Reelin suppresses the proliferation of OPCs and acts as a repellent for their migration in vitro. These functions rely on the binding of Reelin to its receptors and on the signal transduction involving the intracellular protein Dab1. In the late embryonic neocortex of mice with attenuated Reelin signaling [i.e., Reelin heterozygote-deficient, Dab1 heterozygote-deficient mutant, or very low-density lipoprotein receptor (VLDLR)-deficient mice], the number of OPCs increased and their distribution shifted toward the superficial layers. In contrast, the number of OPCs decreased and they tended to distribute in the deep layers in the neocortex of mice with abrogated inactivation of Reelin by proteolytic cleavage, namely a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3)-deficient mice and cleavage-resistant Reelin knock-in mice. Both male and female animals were used. These data indicate that Reelin–Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic neocortex and that the regulation of Reelin function by its specific proteolysis is required for the normal development of OPCs.

Original languageEnglish
Pages (from-to)7625-7636
Number of pages12
JournalJournal of Neuroscience
Volume40
Issue number40
DOIs
Publication statusPublished - 2020 Sep 30

Keywords

  • Dab1
  • Migration
  • Neocortex
  • Oligodendrocyte progenitor cell
  • Reelin

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint

Dive into the research topics of 'The secreted glycoprotein reelin suppresses the proliferation and regulates the distribution of oligodendrocyte progenitor cells in the embryonic neocortex'. Together they form a unique fingerprint.

Cite this