Abstract
The subgrid-scale (SGS) models based on the coherent structure in grid-scale flow fields are proposed and are applied to (non-)rotating homogeneous turbulences and turbulent channel flows. The eddy viscosity is modeled by a coherent structure function (CSF) with a fixed model-parameter. The CSF is defined as the second invariant normalized by the magnitude of a velocity gradient tensor and plays a role of wall damping. The probability density function of the CSF is non-Gaussian showing an intermittency effect. The model parameter is locally determined, and it is always positive and has a small variance. These models satisfy a correct asymptotic behavior to a wall for incompressible flows. It is shown that the SGS models with an energy-decay suppression function which indicates also a pseudo-backscatter are consistent with the asymptotic material frame indifference in a rotating frame. Since the CSF characterizing turbulent flows has relation to the SGS energy dissipation, the present SGS models are applicable not only to (non-)rotating homogeneous and shear turbulences but also to laminar flows. The proposed models have almost the same performance as the dynamic Smagorinsky model for (non-)rotating homogeneous turbulences and turbulent channel flows, but these models do not need to average or clip the model parameter, use an explicit wall-damping function, or change the fixed-parameter, so that they are suitable for engineering applications of large-eddy simulation.
Original language | English |
---|---|
Article number | 045104 |
Pages (from-to) | 045104-1-045104-12 |
Journal | Physics of Fluids |
Volume | 17 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2005 Apr |
ASJC Scopus subject areas
- Computational Mechanics
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Fluid Flow and Transfer Processes