Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model

Koetsu Tamura, Eiji Kikuchi, Tomohiro Konno, Kazuhiko Ishihara, Kazuhiro Matsumoto, Akira Miyajima, Mototsugu Oya

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Background: To evaluate the effects of intravesical administration of paclitaxel (PTX-30W), which was prepared by solubilization with a water-soluble amphiphilic polymer composed of PMB30W, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate, in an orthotopic bladder cancer model. Methods: The cytotoxicities of PMB30W were examined in MBT-2 cell cultures and the results were compared with those of the conventional paclitaxel solubilizer Cremophor. In an orthotopic MBT-2 bladder cancer model, the effect of intravesical administration of PTX-30W was compared with that of paclitaxel solubilized with Cremophor (PTX-CrEL). The paclitaxel concentration in bladder tumors after the intravesical treatment was also evaluated using liquid chromatography tandem mass spectrometry (LC-MS/MS) system. Results: In vitro, Cremophor exhibited dose-dependent cytotoxicity towards MBT-2 cells, whereas no cytotoxicity was observed with PMB30W. In the orthotopic bladder cancer model, intravesical administration of PTX-30W resulted in a significant reduction of bladder wet weight compared with that of PTX-CrEL. The paclitaxel concentration in bladder tumors after the intravesical treatment was significantly higher in PTX-30W treated mice than in PTX-CrEL treated mice. Conclusions: Intravesically administered PTX-30W can elicit stronger antitumor effects on bladder tumors than conventional paclitaxel formulated in Cremophor, presumably because of its better penetration into tumor cells. PTX-30W might be a promising antitumor agent for intravesical treatment of non-muscle invasive bladder cancer.

Original languageEnglish
Article number317
JournalBMC Cancer
Volume15
Issue number1
DOIs
Publication statusPublished - 2015 Apr 26

Fingerprint

Intravesical Administration
Therapeutic Uses
Paclitaxel
Urinary Bladder Neoplasms
Tandem Mass Spectrometry
poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate)
Liquid Chromatography
Antineoplastic Agents
Polymers
Urinary Bladder
Therapeutics
Cell Culture Techniques
Weights and Measures
cremophor
Water

Keywords

  • Intravesical
  • Paclitaxel
  • Urinary bladder
  • Urinary bladder neoplasms

ASJC Scopus subject areas

  • Oncology
  • Cancer Research
  • Genetics

Cite this

Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model. / Tamura, Koetsu; Kikuchi, Eiji; Konno, Tomohiro; Ishihara, Kazuhiko; Matsumoto, Kazuhiro; Miyajima, Akira; Oya, Mototsugu.

In: BMC Cancer, Vol. 15, No. 1, 317, 26.04.2015.

Research output: Contribution to journalArticle

@article{f894f6d0ea5041ad8778819540486786,
title = "Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model",
abstract = "Background: To evaluate the effects of intravesical administration of paclitaxel (PTX-30W), which was prepared by solubilization with a water-soluble amphiphilic polymer composed of PMB30W, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate, in an orthotopic bladder cancer model. Methods: The cytotoxicities of PMB30W were examined in MBT-2 cell cultures and the results were compared with those of the conventional paclitaxel solubilizer Cremophor. In an orthotopic MBT-2 bladder cancer model, the effect of intravesical administration of PTX-30W was compared with that of paclitaxel solubilized with Cremophor (PTX-CrEL). The paclitaxel concentration in bladder tumors after the intravesical treatment was also evaluated using liquid chromatography tandem mass spectrometry (LC-MS/MS) system. Results: In vitro, Cremophor exhibited dose-dependent cytotoxicity towards MBT-2 cells, whereas no cytotoxicity was observed with PMB30W. In the orthotopic bladder cancer model, intravesical administration of PTX-30W resulted in a significant reduction of bladder wet weight compared with that of PTX-CrEL. The paclitaxel concentration in bladder tumors after the intravesical treatment was significantly higher in PTX-30W treated mice than in PTX-CrEL treated mice. Conclusions: Intravesically administered PTX-30W can elicit stronger antitumor effects on bladder tumors than conventional paclitaxel formulated in Cremophor, presumably because of its better penetration into tumor cells. PTX-30W might be a promising antitumor agent for intravesical treatment of non-muscle invasive bladder cancer.",
keywords = "Intravesical, Paclitaxel, Urinary bladder, Urinary bladder neoplasms",
author = "Koetsu Tamura and Eiji Kikuchi and Tomohiro Konno and Kazuhiko Ishihara and Kazuhiro Matsumoto and Akira Miyajima and Mototsugu Oya",
year = "2015",
month = "4",
day = "26",
doi = "10.1186/s12885-015-1338-2",
language = "English",
volume = "15",
journal = "BMC Cancer",
issn = "1471-2407",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model

AU - Tamura, Koetsu

AU - Kikuchi, Eiji

AU - Konno, Tomohiro

AU - Ishihara, Kazuhiko

AU - Matsumoto, Kazuhiro

AU - Miyajima, Akira

AU - Oya, Mototsugu

PY - 2015/4/26

Y1 - 2015/4/26

N2 - Background: To evaluate the effects of intravesical administration of paclitaxel (PTX-30W), which was prepared by solubilization with a water-soluble amphiphilic polymer composed of PMB30W, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate, in an orthotopic bladder cancer model. Methods: The cytotoxicities of PMB30W were examined in MBT-2 cell cultures and the results were compared with those of the conventional paclitaxel solubilizer Cremophor. In an orthotopic MBT-2 bladder cancer model, the effect of intravesical administration of PTX-30W was compared with that of paclitaxel solubilized with Cremophor (PTX-CrEL). The paclitaxel concentration in bladder tumors after the intravesical treatment was also evaluated using liquid chromatography tandem mass spectrometry (LC-MS/MS) system. Results: In vitro, Cremophor exhibited dose-dependent cytotoxicity towards MBT-2 cells, whereas no cytotoxicity was observed with PMB30W. In the orthotopic bladder cancer model, intravesical administration of PTX-30W resulted in a significant reduction of bladder wet weight compared with that of PTX-CrEL. The paclitaxel concentration in bladder tumors after the intravesical treatment was significantly higher in PTX-30W treated mice than in PTX-CrEL treated mice. Conclusions: Intravesically administered PTX-30W can elicit stronger antitumor effects on bladder tumors than conventional paclitaxel formulated in Cremophor, presumably because of its better penetration into tumor cells. PTX-30W might be a promising antitumor agent for intravesical treatment of non-muscle invasive bladder cancer.

AB - Background: To evaluate the effects of intravesical administration of paclitaxel (PTX-30W), which was prepared by solubilization with a water-soluble amphiphilic polymer composed of PMB30W, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate, in an orthotopic bladder cancer model. Methods: The cytotoxicities of PMB30W were examined in MBT-2 cell cultures and the results were compared with those of the conventional paclitaxel solubilizer Cremophor. In an orthotopic MBT-2 bladder cancer model, the effect of intravesical administration of PTX-30W was compared with that of paclitaxel solubilized with Cremophor (PTX-CrEL). The paclitaxel concentration in bladder tumors after the intravesical treatment was also evaluated using liquid chromatography tandem mass spectrometry (LC-MS/MS) system. Results: In vitro, Cremophor exhibited dose-dependent cytotoxicity towards MBT-2 cells, whereas no cytotoxicity was observed with PMB30W. In the orthotopic bladder cancer model, intravesical administration of PTX-30W resulted in a significant reduction of bladder wet weight compared with that of PTX-CrEL. The paclitaxel concentration in bladder tumors after the intravesical treatment was significantly higher in PTX-30W treated mice than in PTX-CrEL treated mice. Conclusions: Intravesically administered PTX-30W can elicit stronger antitumor effects on bladder tumors than conventional paclitaxel formulated in Cremophor, presumably because of its better penetration into tumor cells. PTX-30W might be a promising antitumor agent for intravesical treatment of non-muscle invasive bladder cancer.

KW - Intravesical

KW - Paclitaxel

KW - Urinary bladder

KW - Urinary bladder neoplasms

UR - http://www.scopus.com/inward/record.url?scp=84928990357&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84928990357&partnerID=8YFLogxK

U2 - 10.1186/s12885-015-1338-2

DO - 10.1186/s12885-015-1338-2

M3 - Article

C2 - 25928041

AN - SCOPUS:84928990357

VL - 15

JO - BMC Cancer

JF - BMC Cancer

SN - 1471-2407

IS - 1

M1 - 317

ER -