Abstract
In a glass moulding press (GMP) for refractive/diffractive hybrid lenses, to improve the service life of nickel-phosphorus (Ni-P) plated moulds, it is necessary to control the diffusion of constituent elements from the mould into the release agent coating. In this study, diffusion phenomena of constituents of Ni-P plating are investigated for two types of release agent coatings, iridium-platinum (Ir-Pt) and iridium-rhenium (Ir-Re), by cross-sectional observation, compositional analysis and stress measurements. The results show that Ni atoms in the plating layer flow from regions of compressive stress to regions of tensile stress. In the case of the Ir-Pt coated mould, the diffusion of Ni is promoted from the grain boundaries between the Ni and Ni3P phases in the plating towards the surface of the Ir-Pt coating. However, in the Ir-Re coated mould, the diffusion of Ni is suppressed because the diffusion coefficient of Ni in the Ir-Re alloy is smaller than that in the Ir-Pt alloy, although the stress state is similar in both cases. By controlling the diffusion of Ni atoms, the use of Ir-Re alloy as a release agent coating for Ni-P plated moulds is expected to lead to a high degree of durability.
Original language | English |
---|---|
Article number | 215302 |
Journal | Journal of Physics D: Applied Physics |
Volume | 44 |
Issue number | 21 |
DOIs | |
Publication status | Published - 2011 Jun 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films