TY - JOUR
T1 - Thermodynamic Unification of Optimal Transport
T2 - Thermodynamic Uncertainty Relation, Minimum Dissipation, and Thermodynamic Speed Limits
AU - Van Vu, Tan
AU - Saito, Keiji
N1 - Funding Information:
We thank Shin-ichi Sasa and Andreas Dechant for the fruitful discussion. We are also grateful to Amos Maritan for valuable comments. This work was supported by Grants-in-Aid for Scientific Research (No. JP19H05603 and No. JP19H05791).
Publisher Copyright:
© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2023/1
Y1 - 2023/1
N2 - Thermodynamics serves as a universal means for studying physical systems from an energy perspective. In recent years, with the establishment of the field of stochastic and quantum thermodynamics, the ideas of thermodynamics have been generalized to small fluctuating systems. Independently developed in mathematics and statistics, the optimal transport theory concerns the means by which one can optimally transport a source distribution to a target distribution, deriving a useful metric between probability distributions, called the Wasserstein distance. Despite their seemingly unrelated nature, an intimate connection between these fields has been unveiled in the context of continuous-state Langevin dynamics, providing several important implications for nonequilibrium systems. In this study, we elucidate an analogous connection for discrete cases by developing a thermodynamic framework for discrete optimal transport. We first introduce a novel quantity called dynamical state mobility, which significantly improves the thermodynamic uncertainty relation and provides insights into the precision of currents in nonequilibrium Markov jump processes. We then derive variational formulas that connect the discrete Wasserstein distances to stochastic and quantum thermodynamics of discrete Markovian dynamics described by master equations. Specifically, we rigorously prove that the Wasserstein distance equals the minimum product of irreversible entropy production and dynamical state mobility over all admissible Markovian dynamics. These formulas not only unify the relationship between thermodynamics and the optimal transport theory for discrete and continuous cases, but also generalize it to the quantum case. In addition, we demonstrate that the obtained variational formulas lead to remarkable applications in stochastic and quantum thermodynamics, such as stringent thermodynamic speed limits and the finite-time Landauer principle. These bounds are tight and can be saturated for arbitrary temperatures, even in the zero-temperature limit. Notably, the finite-time Landauer principle can explain finite dissipation even at extremely low temperatures, which cannot be explained by the conventional Landauer principle.
AB - Thermodynamics serves as a universal means for studying physical systems from an energy perspective. In recent years, with the establishment of the field of stochastic and quantum thermodynamics, the ideas of thermodynamics have been generalized to small fluctuating systems. Independently developed in mathematics and statistics, the optimal transport theory concerns the means by which one can optimally transport a source distribution to a target distribution, deriving a useful metric between probability distributions, called the Wasserstein distance. Despite their seemingly unrelated nature, an intimate connection between these fields has been unveiled in the context of continuous-state Langevin dynamics, providing several important implications for nonequilibrium systems. In this study, we elucidate an analogous connection for discrete cases by developing a thermodynamic framework for discrete optimal transport. We first introduce a novel quantity called dynamical state mobility, which significantly improves the thermodynamic uncertainty relation and provides insights into the precision of currents in nonequilibrium Markov jump processes. We then derive variational formulas that connect the discrete Wasserstein distances to stochastic and quantum thermodynamics of discrete Markovian dynamics described by master equations. Specifically, we rigorously prove that the Wasserstein distance equals the minimum product of irreversible entropy production and dynamical state mobility over all admissible Markovian dynamics. These formulas not only unify the relationship between thermodynamics and the optimal transport theory for discrete and continuous cases, but also generalize it to the quantum case. In addition, we demonstrate that the obtained variational formulas lead to remarkable applications in stochastic and quantum thermodynamics, such as stringent thermodynamic speed limits and the finite-time Landauer principle. These bounds are tight and can be saturated for arbitrary temperatures, even in the zero-temperature limit. Notably, the finite-time Landauer principle can explain finite dissipation even at extremely low temperatures, which cannot be explained by the conventional Landauer principle.
UR - http://www.scopus.com/inward/record.url?scp=85149496790&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85149496790&partnerID=8YFLogxK
U2 - 10.1103/PhysRevX.13.011013
DO - 10.1103/PhysRevX.13.011013
M3 - Article
AN - SCOPUS:85149496790
SN - 2160-3308
VL - 13
JO - Physical Review X
JF - Physical Review X
IS - 1
M1 - 011013
ER -