Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins

Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions.

Original languageEnglish
Pages (from-to)3846-3858
Number of pages13
JournalBiomacromolecules
Volume15
Issue number10
DOIs
Publication statusPublished - 2014 Oct 13

Fingerprint

Phase Transition
Biomolecules
Brushes
Sulfonic Acids
Copolymers
Proteins
Static Electricity
Silicon Dioxide
Acids
Phase transitions
Photoelectron Spectroscopy
Coulomb interactions
Polymerization
Catecholamines
Gel Chromatography
Silica
Chromatography
Atom transfer radical polymerization
Gel permeation chromatography
Chemical analysis

ASJC Scopus subject areas

  • Bioengineering
  • Materials Chemistry
  • Polymers and Plastics
  • Biomaterials
  • Medicine(all)

Cite this

Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins. / Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo.

In: Biomacromolecules, Vol. 15, No. 10, 13.10.2014, p. 3846-3858.

Research output: Contribution to journalArticle

@article{3c845c242192429e85856cfdd82f014f,
title = "Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins",
abstract = "A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol {\%}, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions.",
author = "Kenichi Nagase and Jun Kobayashi and Akihiko Kikuchi and Yoshikatsu Akiyama and Hideko Kanazawa and Teruo Okano",
year = "2014",
month = "10",
day = "13",
doi = "10.1021/bm5012163",
language = "English",
volume = "15",
pages = "3846--3858",
journal = "Biomacromolecules",
issn = "1525-7797",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins

AU - Nagase, Kenichi

AU - Kobayashi, Jun

AU - Kikuchi, Akihiko

AU - Akiyama, Yoshikatsu

AU - Kanazawa, Hideko

AU - Okano, Teruo

PY - 2014/10/13

Y1 - 2014/10/13

N2 - A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions.

AB - A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions.

UR - http://www.scopus.com/inward/record.url?scp=84907981977&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84907981977&partnerID=8YFLogxK

U2 - 10.1021/bm5012163

DO - 10.1021/bm5012163

M3 - Article

VL - 15

SP - 3846

EP - 3858

JO - Biomacromolecules

JF - Biomacromolecules

SN - 1525-7797

IS - 10

ER -