Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds

Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Poly(N-isopropylacrylamide), one of the most utilized thermoresponsive polymers, brush-grafted monolithic-silica columns were prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive-chromatography matrices. ATRP initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. N-Isopropylacrylamide (IPAAm) monomer and CuCl/CuCl 2/Me 6TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator-modified columns at 25 °C for 16 h. The constructed PIPAAm-brush structure on the monolithic silica-rod surface was confirmed by XPS, elemental analysis, SEM observation, and GPC measurement of grafted PIPAAm. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. PIPAAm-brush-modified monolithic silica-rod columns were able to separate hydrophobic steroids with a short analysis time (10 min), compared to PIPAAm-brush-modified silica-beads-packed columns, because of the horizontally limited diffusion path length of monolithic supporting materials. Additionally, diluted PIPAAm-brush monolithic silica-rod column gave a further shorting analysis time (5 min). These results indicated (1) surface-initiated ATRP constructed PIPAAm-brush structures on monolithic silica-rod surfaces and (2) PIPAAm-brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing hydrophobic-bioactive compounds with a short analysis time.

Original languageEnglish
Pages (from-to)10830-10839
Number of pages10
JournalLangmuir
Volume27
Issue number17
DOIs
Publication statusPublished - 2011 Sep 6

Fingerprint

brushes
Brushes
activity (biology)
Silicon Dioxide
Polymers
rods
Silica
high speed
silicon dioxide
Atom transfer radical polymerization
polymers
polymerization
initiators
atoms
Chromatographic analysis
steroids
2-Propanol
poly-N-isopropylacrylamide
Toluene
Propanol

ASJC Scopus subject areas

  • Electrochemistry
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Materials Science(all)
  • Spectroscopy

Cite this

Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds. / Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo.

In: Langmuir, Vol. 27, No. 17, 06.09.2011, p. 10830-10839.

Research output: Contribution to journalArticle

Nagase, Kenichi ; Kobayashi, Jun ; Kikuchi, Akihiko ; Akiyama, Yoshikatsu ; Kanazawa, Hideko ; Okano, Teruo. / Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds. In: Langmuir. 2011 ; Vol. 27, No. 17. pp. 10830-10839.
@article{060344a706d44af1a6ea03356ae54390,
title = "Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds",
abstract = "Poly(N-isopropylacrylamide), one of the most utilized thermoresponsive polymers, brush-grafted monolithic-silica columns were prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive-chromatography matrices. ATRP initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. N-Isopropylacrylamide (IPAAm) monomer and CuCl/CuCl 2/Me 6TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator-modified columns at 25 °C for 16 h. The constructed PIPAAm-brush structure on the monolithic silica-rod surface was confirmed by XPS, elemental analysis, SEM observation, and GPC measurement of grafted PIPAAm. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. PIPAAm-brush-modified monolithic silica-rod columns were able to separate hydrophobic steroids with a short analysis time (10 min), compared to PIPAAm-brush-modified silica-beads-packed columns, because of the horizontally limited diffusion path length of monolithic supporting materials. Additionally, diluted PIPAAm-brush monolithic silica-rod column gave a further shorting analysis time (5 min). These results indicated (1) surface-initiated ATRP constructed PIPAAm-brush structures on monolithic silica-rod surfaces and (2) PIPAAm-brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing hydrophobic-bioactive compounds with a short analysis time.",
author = "Kenichi Nagase and Jun Kobayashi and Akihiko Kikuchi and Yoshikatsu Akiyama and Hideko Kanazawa and Teruo Okano",
year = "2011",
month = "9",
day = "6",
doi = "10.1021/la201360p",
language = "English",
volume = "27",
pages = "10830--10839",
journal = "Langmuir",
issn = "0743-7463",
publisher = "American Chemical Society",
number = "17",

}

TY - JOUR

T1 - Thermoresponsive polymer brush on monolithic-silica-rod for the high-speed separation of bioactive compounds

AU - Nagase, Kenichi

AU - Kobayashi, Jun

AU - Kikuchi, Akihiko

AU - Akiyama, Yoshikatsu

AU - Kanazawa, Hideko

AU - Okano, Teruo

PY - 2011/9/6

Y1 - 2011/9/6

N2 - Poly(N-isopropylacrylamide), one of the most utilized thermoresponsive polymers, brush-grafted monolithic-silica columns were prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive-chromatography matrices. ATRP initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. N-Isopropylacrylamide (IPAAm) monomer and CuCl/CuCl 2/Me 6TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator-modified columns at 25 °C for 16 h. The constructed PIPAAm-brush structure on the monolithic silica-rod surface was confirmed by XPS, elemental analysis, SEM observation, and GPC measurement of grafted PIPAAm. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. PIPAAm-brush-modified monolithic silica-rod columns were able to separate hydrophobic steroids with a short analysis time (10 min), compared to PIPAAm-brush-modified silica-beads-packed columns, because of the horizontally limited diffusion path length of monolithic supporting materials. Additionally, diluted PIPAAm-brush monolithic silica-rod column gave a further shorting analysis time (5 min). These results indicated (1) surface-initiated ATRP constructed PIPAAm-brush structures on monolithic silica-rod surfaces and (2) PIPAAm-brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing hydrophobic-bioactive compounds with a short analysis time.

AB - Poly(N-isopropylacrylamide), one of the most utilized thermoresponsive polymers, brush-grafted monolithic-silica columns were prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive-chromatography matrices. ATRP initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. N-Isopropylacrylamide (IPAAm) monomer and CuCl/CuCl 2/Me 6TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator-modified columns at 25 °C for 16 h. The constructed PIPAAm-brush structure on the monolithic silica-rod surface was confirmed by XPS, elemental analysis, SEM observation, and GPC measurement of grafted PIPAAm. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. PIPAAm-brush-modified monolithic silica-rod columns were able to separate hydrophobic steroids with a short analysis time (10 min), compared to PIPAAm-brush-modified silica-beads-packed columns, because of the horizontally limited diffusion path length of monolithic supporting materials. Additionally, diluted PIPAAm-brush monolithic silica-rod column gave a further shorting analysis time (5 min). These results indicated (1) surface-initiated ATRP constructed PIPAAm-brush structures on monolithic silica-rod surfaces and (2) PIPAAm-brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing hydrophobic-bioactive compounds with a short analysis time.

UR - http://www.scopus.com/inward/record.url?scp=80052199093&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052199093&partnerID=8YFLogxK

U2 - 10.1021/la201360p

DO - 10.1021/la201360p

M3 - Article

C2 - 21740046

AN - SCOPUS:80052199093

VL - 27

SP - 10830

EP - 10839

JO - Langmuir

JF - Langmuir

SN - 0743-7463

IS - 17

ER -