TY - JOUR
T1 - Time-of-flight measurements of vortices emitted from quantum turbulence in superfluid 4He
AU - Kubo, H.
AU - Nago, Y.
AU - Nishijima, A.
AU - Obara, K.
AU - Yano, H.
AU - Ishikawa, O.
AU - Hata, T.
N1 - Funding Information:
Acknowledgements The authors are very grateful to M. Tsubota and A. Nakatsuji for stimulating discussions and K.J. Thompson for discussions on analysis. The research was supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 23340108) from Japan Society for the Promotion of Science.
PY - 2013/6
Y1 - 2013/6
N2 - An oscillating obstacle generates quantum turbulence in superfluids, when vortices remained attached to obstacle surfaces or vortex rings collided with it during oscillation. Turbulence provides a source of vortices; however, the characteristics of these vortices are not clear. In the present work, we report the flight of vortices emitted from quantum turbulence in superfluid 4He at low temperatures, using vibrating wires as a generator and a detector of vortices. A vortex-free vibrating wire can detect only the first colliding vortex ring, though it will be refreshed after low vibration and be able to detect a vortex ring again. By measuring a period from the start of turbulence generation to the vortex detection repeatedly, we find an exponential distribution of time-of-flights with a non-detection period t 0 and a mean detection period t 1, suggesting a Poisson process. Both periods t 0 and t 1 increase with increasing distance between a generator and a detector. A vortex flight velocity estimated from period t 0 suggests that the sizes of the emitted vortex rings distribute to a range smaller than a generator thickness or a generator vibration amplitude. Vortices are emitted radially from a turbulence region, at least in the direction of oscillator vibration.
AB - An oscillating obstacle generates quantum turbulence in superfluids, when vortices remained attached to obstacle surfaces or vortex rings collided with it during oscillation. Turbulence provides a source of vortices; however, the characteristics of these vortices are not clear. In the present work, we report the flight of vortices emitted from quantum turbulence in superfluid 4He at low temperatures, using vibrating wires as a generator and a detector of vortices. A vortex-free vibrating wire can detect only the first colliding vortex ring, though it will be refreshed after low vibration and be able to detect a vortex ring again. By measuring a period from the start of turbulence generation to the vortex detection repeatedly, we find an exponential distribution of time-of-flights with a non-detection period t 0 and a mean detection period t 1, suggesting a Poisson process. Both periods t 0 and t 1 increase with increasing distance between a generator and a detector. A vortex flight velocity estimated from period t 0 suggests that the sizes of the emitted vortex rings distribute to a range smaller than a generator thickness or a generator vibration amplitude. Vortices are emitted radially from a turbulence region, at least in the direction of oscillator vibration.
KW - Quantized vortex
KW - Quantum turbulence
KW - Superfluid He
UR - http://www.scopus.com/inward/record.url?scp=84878011423&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878011423&partnerID=8YFLogxK
U2 - 10.1007/s10909-012-0723-3
DO - 10.1007/s10909-012-0723-3
M3 - Article
AN - SCOPUS:84878011423
SN - 0022-2291
VL - 171
SP - 466
EP - 472
JO - Journal of Low Temperature Physics
JF - Journal of Low Temperature Physics
IS - 5-6
ER -