@article{e1e8a8d7076f4bc49763c8069860be5d,
title = "Time-series transcriptomic screening of factors contributing to the cross-tolerance to UV radiation and anhydrobiosis in tardigrades",
abstract = "Background: Tardigrades are microscopic animals that are capable of tolerating extreme environments by entering a desiccated state of suspended animation known as anhydrobiosis. While antioxidative stress proteins, antiapoptotic pathways and tardigrade-specific intrinsically disordered proteins have been implicated in the anhydrobiotic machinery, conservation of these mechanisms is not universal within the phylum Tardigrada, suggesting the existence of overlooked components. Results: Here, we show that a novel Mn-dependent peroxidase is an important factor in tardigrade anhydrobiosis. Through time-series transcriptome analysis of Ramazzottius varieornatus specimens exposed to ultraviolet light and comparison with anhydrobiosis entry, we first identified several novel gene families without similarity to existing sequences that are induced rapidly after stress exposure. Among these, a single gene family with multiple orthologs that is highly conserved within the phylum Tardigrada and enhances oxidative stress tolerance when expressed in human cells was identified. Crystallographic study of this protein suggested Zn or Mn binding at the active site, and we further confirmed that this protein has Mn-dependent peroxidase activity in vitro. Conclusions: Our results demonstrated novel mechanisms for coping with oxidative stress that may be a fundamental mechanism of anhydrobiosis in tardigrades. Furthermore, localization of these sets of proteins mainly in the Golgi apparatus suggests an indispensable role of the Golgi stress response in desiccation tolerance.",
keywords = "Anhydrobiosis, Antioxidative stress, Tardigrade, Ultraviolet C",
author = "Yuki Yoshida and Tadashi Satoh and Chise Ota and Sae Tanaka and Horikawa, {Daiki D.} and Masaru Tomita and Koichi Kato and Kazuharu Arakawa",
note = "Funding Information: We thank Nozomi Abe and Naoko Ishii for tardigrade sample preparation. We also thank Yuki Takai, Dr. Akio Kanai, Fumie Nakasuka, Dr. Shojiro Kitajima and Dr. Sho Tabata (Keio University IAB) for their advice on the experiments. We acknowledge Dr. Maho Yagi-Utsumi (ExCELLS) for her useful discussion. We thank Kumiko Hattori (Nagoya City University) for her help in the preparation of recombinant proteins. We also thank Dr. James Fleming (Keio University IAB) for proofreading the manuscript. The diffraction data set were collected at Nagoya University using the BL2S1 beamline at Aichi Synchrotron Radiation Center (Japan) and Osaka University using BL44XU beamline at SPring-8 (Japan). We thank the beamline staff for providing the data collection facilities and support. We acknowledge the assistance of the Research Equipment Sharing Center at Nagoya City University for ITC measurement. C. vulgaris used to feed the tardigrades was provided courtesy of Cholorela Industry. Funding Information: This work is supported by KAKENHI Grant-in-Aid for Scientific Research (B) and Grant-in-Aid for JSPS Fellows from the Japan Society for the Promotion of Science (JSPS, grant no. JP18J21155, 17H03620), Joint Research by Exploratory Research Center on Life and Living Systems (ExCELLS program No. 19–208 and 19–501) and partly by research funds from the Yamagata Prefectural Government and Tsuruoka City, Japan. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. Publisher Copyright: {\textcopyright} 2022, The Author(s).",
year = "2022",
month = dec,
doi = "10.1186/s12864-022-08642-1",
language = "English",
volume = "23",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",
number = "1",
}