TY - GEN
T1 - Tool posture and polishing force control on unknown 3-dimensional curved surface
AU - Oba, Yuta
AU - Kakinuma, Yasuhiro
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - In the painting process in automotive manufacturing, the repair polishing process is still done manually by a worker with a sufficient skilled technique. However, the number of skilled workers is decreasing with the aging. In addition, the polishing time and the surface quality after the repair polishing are dependent on the proficiency level of the worker. Thus, skill-independent automation technology for the repair polishing is required. In our past research, the serial-parallel mechanism polishing machine was developed for automating the polishing process. The developed machine can control the tool trajectory, tool posture and polishing force simultaneously. In addition, the polishing force is controlled without external sensors by the reaction force observer system. This study aims to develop a polishing automation method for unknown 3- dimensional curved surface by using the developed machine. First, the tool posture control method on unknown curved surface was proposed. Second, the normal force control method based on the posture information was proposed. By using these proposed methods simultaneously, the tool posture and polishing force were controlled in the normal direction on unknown 3-dimesional curved surface. From the experimental results, the validity of the proposed method was verified.
AB - In the painting process in automotive manufacturing, the repair polishing process is still done manually by a worker with a sufficient skilled technique. However, the number of skilled workers is decreasing with the aging. In addition, the polishing time and the surface quality after the repair polishing are dependent on the proficiency level of the worker. Thus, skill-independent automation technology for the repair polishing is required. In our past research, the serial-parallel mechanism polishing machine was developed for automating the polishing process. The developed machine can control the tool trajectory, tool posture and polishing force simultaneously. In addition, the polishing force is controlled without external sensors by the reaction force observer system. This study aims to develop a polishing automation method for unknown 3- dimensional curved surface by using the developed machine. First, the tool posture control method on unknown curved surface was proposed. Second, the normal force control method based on the posture information was proposed. By using these proposed methods simultaneously, the tool posture and polishing force were controlled in the normal direction on unknown 3-dimesional curved surface. From the experimental results, the validity of the proposed method was verified.
KW - Parallel Mechanism
KW - Polishing
KW - Unknown Curved Surface
UR - http://www.scopus.com/inward/record.url?scp=84991661282&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84991661282&partnerID=8YFLogxK
U2 - 10.1115/MSEC2016-8762
DO - 10.1115/MSEC2016-8762
M3 - Conference contribution
AN - SCOPUS:84991661282
T3 - ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016
BT - Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
PB - American Society of Mechanical Engineers
T2 - ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016
Y2 - 27 June 2016 through 1 July 2016
ER -