TY - JOUR
T1 - Transport of Pregabalin Via L-Type Amino Acid Transporter 1 (SLC7A5) in Human Brain Capillary Endothelial Cell Line
AU - Takahashi, Yu
AU - Nishimura, Tomohiro
AU - Higuchi, Kei
AU - Noguchi, Saki
AU - Tega, Yuma
AU - Kurosawa, Toshiki
AU - Deguchi, Yoshiharu
AU - Tomi, Masatoshi
N1 - Funding Information:
We thank Dr. Pierre-Olivier Couraud (Institut Cochin, Paris, France) for supplying hCMEC/D3 cells under license from INSERM. This study was supported in part by JSPS KAKENHI [Grants 15 K15007, 15 K08595, and 16 K08381]. It was also partially funded by Keio Gijuku Academic Development Funds, Keio University Doctorate Student Grant-in-Aid Program, The Mochida Memorial Foundation for Medical and Pharmaceutical Research, and The Uehara Memorial Foundation. This work was supported in part by MEXT-Supported Program for the Strategic Research Foundation at Private Universities.
Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Purpose: The anti-epileptic drug pregabalin crosses the blood-brain barrier (BBB) in spite of its low lipophilicity. This study was performed to determine whether L-type amino acid transporters (LAT1/SLC7A5 and LAT2/SLC7A8) contribute to the uptake of pregabalin. Methods: Pregabalin uptake by LATs-transfected HEK293 cells or hCMEC/D3 cells, an in vitro human BBB model, was measured by LC-MS/MS analysis. Expression of LAT1 mRNA in hCMEC/D3 cells was determined by quantitative RT-PCR analysis. Results: Overexpression of LAT1, but not LAT2, in HEK293 cells significantly increased the cellular uptake of pregabalin, and the LAT1-mediated uptake was saturable with a Km of 0.288 mM. LAT1-mediated amino acid uptake was inhibited specifically and almost completely in the presence of 1 mM pregabalin. The uptake of pregabalin by hCMEC/D3 cells was sodium-independent, saturable (Km = 0.854 mM), and strongly inhibited by large amino acids at 1 mM, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, a specific system L inhibitor, at 1 mM and by JPH203, a LAT1-selective inhibitor, at 10 μM. Pregabalin uptake in hCMEC/D3 cells was also decreased by 75% by the silencing of LAT1 gene using LAT1 siRNA. Conclusions: Our results indicate that LAT1, but not LAT2, recognizes pregabalin as a substrate. It is suggested that LAT1 mediates pregabalin transport at the BBB.
AB - Purpose: The anti-epileptic drug pregabalin crosses the blood-brain barrier (BBB) in spite of its low lipophilicity. This study was performed to determine whether L-type amino acid transporters (LAT1/SLC7A5 and LAT2/SLC7A8) contribute to the uptake of pregabalin. Methods: Pregabalin uptake by LATs-transfected HEK293 cells or hCMEC/D3 cells, an in vitro human BBB model, was measured by LC-MS/MS analysis. Expression of LAT1 mRNA in hCMEC/D3 cells was determined by quantitative RT-PCR analysis. Results: Overexpression of LAT1, but not LAT2, in HEK293 cells significantly increased the cellular uptake of pregabalin, and the LAT1-mediated uptake was saturable with a Km of 0.288 mM. LAT1-mediated amino acid uptake was inhibited specifically and almost completely in the presence of 1 mM pregabalin. The uptake of pregabalin by hCMEC/D3 cells was sodium-independent, saturable (Km = 0.854 mM), and strongly inhibited by large amino acids at 1 mM, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, a specific system L inhibitor, at 1 mM and by JPH203, a LAT1-selective inhibitor, at 10 μM. Pregabalin uptake in hCMEC/D3 cells was also decreased by 75% by the silencing of LAT1 gene using LAT1 siRNA. Conclusions: Our results indicate that LAT1, but not LAT2, recognizes pregabalin as a substrate. It is suggested that LAT1 mediates pregabalin transport at the BBB.
KW - L-type amino acid transporter
KW - anti-epileptic drug
KW - blood-brain barrier
KW - pregabalin
UR - http://www.scopus.com/inward/record.url?scp=85055617866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055617866&partnerID=8YFLogxK
U2 - 10.1007/s11095-018-2532-0
DO - 10.1007/s11095-018-2532-0
M3 - Article
C2 - 30374619
AN - SCOPUS:85055617866
SN - 0724-8741
VL - 35
JO - Pharmaceutical Research
JF - Pharmaceutical Research
IS - 12
M1 - 246
ER -