TriQuinoline

Shinya Adachi, Masakatsu Shibasaki, Naoya Kumagai

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

The bottom-up synthesis of structurally well-defined motifs of graphitic materials is crucial to understanding their physicochemical properties and to elicit new functions. Herein, we report the design and synthesis of TriQuinoline (TQ) as a molecular model for pyridinic-nitrogen defects in graphene sheets. TQ is a trimer of quinoline units concatenated at the 2- and 8-positions in a head-to-tail fashion, whose structure leads to unusual aromatisation behaviour at the final stage of the synthesis. The central atomic-sized void endows TQ with high proton affinity, which was confirmed empirically and computationally. TQ•H+ is a two-dimensional cationic molecule that displays both π–π and CH–π contact modes, culminating in the formation of the ternary complex ([12]cycloparaphenylene(CPP) ⊃ (TQ•H+/coronene)) that consists of TQ•H+, coronene (flat), and [12]cycloparaphenylene ([12]CPP) (ring). The water-miscibility of TQ•H+ allows it to serve as an efficient DNA intercalator for e.g. the inhibition of topoisomerase I activity.

Original languageEnglish
Article number3820
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'TriQuinoline'. Together they form a unique fingerprint.

Cite this