Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification

T. Dion, D. M. Arroo, K. Yamanoi, T. Kimura, J. C. Gartside, L. F. Cohen, H. Kurebayashi, W. R. Branford

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Ferromagnetic resonance (FMR) is performed on kagome artificial spin ice (ASI) formed of disconnected Ni80Fe20 nanowires. Here we break the threefold angular symmetry of the kagome lattice by altering the coercive field of each sublattice via shape anisotropy modification. This allows for distinct high-frequency responses when a magnetic field is aligned along each sublattice and additionally enables simultaneous spin-wave resonances to be excited in all nanowire sublattices, unachievable in conventional kagome ASI. The different coercive field of each sublattice allows selective magnetic switching via global field, unlocking novel microstates inaccessible in homogeneous-nanowire ASI. The distinct spin-wave spectra of these states are detected experimentally via FMR and linked to underlying microstates using micromagnetic simulation.

Original languageEnglish
Article number054433
JournalPhysical Review B
Volume100
Issue number5
DOIs
Publication statusPublished - 2019 Aug 23

Fingerprint

Ice
sublattices
Nanowires
Ferromagnetic resonance
Magnetization
ice
Spin waves
Anisotropy
magnetization
anisotropy
nanowires
ferromagnetic resonance
magnons
magnetic switching
Frequency response
frequency response
Magnetic fields
symmetry
magnetic fields
simulation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this

Dion, T., Arroo, D. M., Yamanoi, K., Kimura, T., Gartside, J. C., Cohen, L. F., ... Branford, W. R. (2019). Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. Physical Review B, 100(5), [054433]. https://doi.org/10.1103/PhysRevB.100.054433

Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. / Dion, T.; Arroo, D. M.; Yamanoi, K.; Kimura, T.; Gartside, J. C.; Cohen, L. F.; Kurebayashi, H.; Branford, W. R.

In: Physical Review B, Vol. 100, No. 5, 054433, 23.08.2019.

Research output: Contribution to journalArticle

Dion, T, Arroo, DM, Yamanoi, K, Kimura, T, Gartside, JC, Cohen, LF, Kurebayashi, H & Branford, WR 2019, 'Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification', Physical Review B, vol. 100, no. 5, 054433. https://doi.org/10.1103/PhysRevB.100.054433
Dion, T. ; Arroo, D. M. ; Yamanoi, K. ; Kimura, T. ; Gartside, J. C. ; Cohen, L. F. ; Kurebayashi, H. ; Branford, W. R. / Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. In: Physical Review B. 2019 ; Vol. 100, No. 5.
@article{eab9ae5c8dda4cfea7d5d6053031be36,
title = "Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification",
abstract = "Ferromagnetic resonance (FMR) is performed on kagome artificial spin ice (ASI) formed of disconnected Ni80Fe20 nanowires. Here we break the threefold angular symmetry of the kagome lattice by altering the coercive field of each sublattice via shape anisotropy modification. This allows for distinct high-frequency responses when a magnetic field is aligned along each sublattice and additionally enables simultaneous spin-wave resonances to be excited in all nanowire sublattices, unachievable in conventional kagome ASI. The different coercive field of each sublattice allows selective magnetic switching via global field, unlocking novel microstates inaccessible in homogeneous-nanowire ASI. The distinct spin-wave spectra of these states are detected experimentally via FMR and linked to underlying microstates using micromagnetic simulation.",
author = "T. Dion and Arroo, {D. M.} and K. Yamanoi and T. Kimura and Gartside, {J. C.} and Cohen, {L. F.} and H. Kurebayashi and Branford, {W. R.}",
year = "2019",
month = "8",
day = "23",
doi = "10.1103/PhysRevB.100.054433",
language = "English",
volume = "100",
journal = "Physical Review B-Condensed Matter",
issn = "2469-9950",
publisher = "American Physical Society",
number = "5",

}

TY - JOUR

T1 - Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification

AU - Dion, T.

AU - Arroo, D. M.

AU - Yamanoi, K.

AU - Kimura, T.

AU - Gartside, J. C.

AU - Cohen, L. F.

AU - Kurebayashi, H.

AU - Branford, W. R.

PY - 2019/8/23

Y1 - 2019/8/23

N2 - Ferromagnetic resonance (FMR) is performed on kagome artificial spin ice (ASI) formed of disconnected Ni80Fe20 nanowires. Here we break the threefold angular symmetry of the kagome lattice by altering the coercive field of each sublattice via shape anisotropy modification. This allows for distinct high-frequency responses when a magnetic field is aligned along each sublattice and additionally enables simultaneous spin-wave resonances to be excited in all nanowire sublattices, unachievable in conventional kagome ASI. The different coercive field of each sublattice allows selective magnetic switching via global field, unlocking novel microstates inaccessible in homogeneous-nanowire ASI. The distinct spin-wave spectra of these states are detected experimentally via FMR and linked to underlying microstates using micromagnetic simulation.

AB - Ferromagnetic resonance (FMR) is performed on kagome artificial spin ice (ASI) formed of disconnected Ni80Fe20 nanowires. Here we break the threefold angular symmetry of the kagome lattice by altering the coercive field of each sublattice via shape anisotropy modification. This allows for distinct high-frequency responses when a magnetic field is aligned along each sublattice and additionally enables simultaneous spin-wave resonances to be excited in all nanowire sublattices, unachievable in conventional kagome ASI. The different coercive field of each sublattice allows selective magnetic switching via global field, unlocking novel microstates inaccessible in homogeneous-nanowire ASI. The distinct spin-wave spectra of these states are detected experimentally via FMR and linked to underlying microstates using micromagnetic simulation.

UR - http://www.scopus.com/inward/record.url?scp=85072024166&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072024166&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.100.054433

DO - 10.1103/PhysRevB.100.054433

M3 - Article

AN - SCOPUS:85072024166

VL - 100

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 2469-9950

IS - 5

M1 - 054433

ER -