Abstract
Turbulence distortion by solid particles in a fully-developed channel flow was investigated by Lagrangian measurement technique. Digital particle image velocimetry and a high-speed CCD camera mounted on a shuttle moving with particle mean streamwise velocity were used to simultaneously detect particle and fluid information amongst particles. Two classes of particles at particle volumetric fraction up to 3.32 × 10"' were employed to provide characteristic values of length ratio and distance between particles, i.e., inter-particle spacing. Turbulence augmentation by particles greater than the Kolmogorov micro length scale was induced by the region of the high-strain rate and high vorticity on both sides of particles. The Rapid Distortion Theory applied to dispersed two-phase turbulent flows indicated that the directional non-isotropic structure was observed with an increase in particle volumetric fraction. The enstrophy production was enhanced with decreasing values of inter-particle spacing, yielding an increase in the enstrophy amongst particles.
Original language | English |
---|---|
Pages (from-to) | 415-422 |
Number of pages | 8 |
Journal | Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B |
Volume | 66 |
Issue number | 642 |
DOIs | |
Publication status | Published - 2000 Feb |
Keywords
- Directional interaction
- Inter-particle spacing
- Lagrangian PIV
- Multiphase flow
- RDT
- Turbulence distortion
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanical Engineering