TY - JOUR
T1 - Ubc9 and protein inhibitor of activated STAT 1 activate chicken ovalbumin upstream promoter-transcription factor I-mediated human CYP11B2 gene transcription
AU - Kurihara, Isao
AU - Shibata, Hirotaka
AU - Kobayashi, Sakiko
AU - Suda, Noriko
AU - Ikeda, Yayoi
AU - Yokota, Kenichi
AU - Murai, Ayano
AU - Saito, Ikuo
AU - Rainey, William E.
AU - Saruta, Takao
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/2/25
Y1 - 2005/2/25
N2 - Aldosterone synthase (CYP11B2) is involved in the final steps of aldosterone biosynthesis and expressed exclusively in the adrenal zona glomerulosa cells. Using an electrophoretic mobility shift assay, we demonstrate that COUP-TFI binds to the -129/-114 element (Ad5) of human CYP11B2 promoter. Transient transfection in H295R adrenal cells demonstrated that COUP-TFI enhanced CYP11B2 reporter activity. However, the reporter construct with mutated Ad5 sequences showed reduced basal and COUP-TFI-enhanced activity, suggesting that binding of COUP-TFI to Ad5 is important for CYP11B2 transactivation. To elucidate molecular mechanisms of COUP-TFI-mediated activity, we subsequently screened for COUP-TFI-interacting proteins from a human adrenal cDNA library using a yeast two-hybrid system and identified Ubc9 and PIAS1, which have small ubiquitin-related modifier-1 (SUMO-1) conjugase and ligase activities, respectively. The coimmunoprecipitation assays confirmed that COUP-TFI forms a complex with Ubc9 and PIAS1 in mammalian cells. Immunohistochemistry showed that Ubc9 and PIAS1 are markedly expressed in rat adrenal glomerulosa cells. Coexpression of Ubc9 and PIAS1 synergistically enhanced the COUP-TFI-mediated CYP11B2 reporter activity, indicating that both proteins function as coactivators of COUP-TFI. However, sumoylation-defective mutants, Ubc9 (C93S) and PIAS1 (C351S), continued to function as coactivators of COUP-TFI, indicating that sumoylation activity are separable from coactivator ability. In addition, chromatin immunoprecipitation assays demonstrated that ectopically expressed COUP-TFI, Ubc9, and PIAS1 were recruited to an endogenous CYP11B2 promoter. Moreover, reduction of Ubc9 or PIAS1 protein levels by small interfering RNA inhibited the CYP11B2 transactivation by COUP-TFI. Our data support a physiological role of Ubc9 and PIAS1 as transcriptional coactivators in COUP-TFI-mediated CYP11B2 transcription.
AB - Aldosterone synthase (CYP11B2) is involved in the final steps of aldosterone biosynthesis and expressed exclusively in the adrenal zona glomerulosa cells. Using an electrophoretic mobility shift assay, we demonstrate that COUP-TFI binds to the -129/-114 element (Ad5) of human CYP11B2 promoter. Transient transfection in H295R adrenal cells demonstrated that COUP-TFI enhanced CYP11B2 reporter activity. However, the reporter construct with mutated Ad5 sequences showed reduced basal and COUP-TFI-enhanced activity, suggesting that binding of COUP-TFI to Ad5 is important for CYP11B2 transactivation. To elucidate molecular mechanisms of COUP-TFI-mediated activity, we subsequently screened for COUP-TFI-interacting proteins from a human adrenal cDNA library using a yeast two-hybrid system and identified Ubc9 and PIAS1, which have small ubiquitin-related modifier-1 (SUMO-1) conjugase and ligase activities, respectively. The coimmunoprecipitation assays confirmed that COUP-TFI forms a complex with Ubc9 and PIAS1 in mammalian cells. Immunohistochemistry showed that Ubc9 and PIAS1 are markedly expressed in rat adrenal glomerulosa cells. Coexpression of Ubc9 and PIAS1 synergistically enhanced the COUP-TFI-mediated CYP11B2 reporter activity, indicating that both proteins function as coactivators of COUP-TFI. However, sumoylation-defective mutants, Ubc9 (C93S) and PIAS1 (C351S), continued to function as coactivators of COUP-TFI, indicating that sumoylation activity are separable from coactivator ability. In addition, chromatin immunoprecipitation assays demonstrated that ectopically expressed COUP-TFI, Ubc9, and PIAS1 were recruited to an endogenous CYP11B2 promoter. Moreover, reduction of Ubc9 or PIAS1 protein levels by small interfering RNA inhibited the CYP11B2 transactivation by COUP-TFI. Our data support a physiological role of Ubc9 and PIAS1 as transcriptional coactivators in COUP-TFI-mediated CYP11B2 transcription.
UR - http://www.scopus.com/inward/record.url?scp=20044364558&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=20044364558&partnerID=8YFLogxK
U2 - 10.1074/jbc.M411820200
DO - 10.1074/jbc.M411820200
M3 - Article
C2 - 15611122
AN - SCOPUS:20044364558
VL - 280
SP - 6721
EP - 6730
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 8
ER -