Ultrahigh-Sensitive Compression-Stress Sensor Using Integrated Stimuli-Responsive Materials

Minami Nakamitsu, Keigo Oyama, Hiroaki Imai, Syuji Fujii, Yuya Oaki

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Measurement of mechanical stresses, such as compression, shear, and tensile stresses, contributes toward achieving a safer and healthier life. In particular, the detection of weak compression stresses is required for healthcare monitoring and biomedical applications. Compression stresses in the order of 106–1010 Pa have been visualized and/or quantified using mechano-responsive materials in previous works. However, in general, it is not easy to detect compression stresses weaker than 103 Pa using conventional mechano-responsive materials because the dynamic motion of the rigid mechano-responsive molecules is not induced by such a weak stress. In the present work, weak compression stresses in the order of 100–103 Pa are visualized and measured via the integration of stimuli-responsive materials, such as layered polydiacetylene (PDA) and dry liquid (DL), through response cascades. DLs consisting of liquid droplets covered by solid particles release the interior liquid and collapse with application of a weak compression stress. The color of the layered PDA is changed by the spilled liquid as a chemical stress. A variety of weak compression stresses, such as expiratory pressure, are visualized and colorimetrically measured using the paper-based device of the integrated stimuli-responsive materials. Diverse mechano-sensing devices can be designed via the integration of stimuli-responsive materials.

Original languageEnglish
Article number2008755
JournalAdvanced Materials
Volume33
Issue number14
DOIs
Publication statusPublished - 2021 Apr 8

Keywords

  • colorimetric detection of compression stress
  • compression-stress sensors
  • conjugated polymers
  • dry liquids
  • layered polydiacetylene
  • stimuli-responsive materials

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Ultrahigh-Sensitive Compression-Stress Sensor Using Integrated Stimuli-Responsive Materials'. Together they form a unique fingerprint.

Cite this