Abstract
We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
Original language | English |
---|---|
Article number | 150501 |
Journal | Physical review letters |
Volume | 119 |
Issue number | 15 |
DOIs | |
Publication status | Published - 2017 Oct 13 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Physical review letters, Vol. 119, No. 15, 150501, 13.10.2017.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels
AU - Takeoka, Masahiro
AU - Seshadreesan, Kaushik P.
AU - Wilde, Mark M.
N1 - Funding Information: We have established the unconstrained capacity region of a pure-loss bosonic broadcast channel for LOCC-assisted entanglement and secret key distillation. The channel we considered here is general in the sense that it includes any (no-repeater) linear optics network as its isometric extension. It could provide a useful benchmark for the broadcasting of entanglement and secret key through such channels. Furthermore, our result stimulates practical protocols for QKD or entanglement distillation over broadcast channels that overcome the time-sharing bound. As an example, we show the BC-CVQKD approach that can outperform a simple application of the point-to-point strategy. We thank Saikat Guha, Michael Horodecki, Haoyu Qi, and John Smolin. M. T. acknowledges the Open Partnership Joint Projects of JSPS Bilateral Joint Research Projects and the ImPACT Program of Council for Science, Technology, and Innovation, Japan. M. M. W. thanks NICT for hosting him and acknowledges NSF and ONR. K. P. S. thanks the Max Planck Society. [1] 1 C. H. Bennett and G. Brassard , in Proceedings of the IEEE International Conference on Computer Systems and Signal Processing ( IEEE , New York, 1984 ), p. 175 . [2] 2 A. K. Ekert , Phys. Rev. Lett. 67 , 661 ( 1991 ). PRLTAO 0031-9007 10.1103/PhysRevLett.67.661 [3] 3 C. H. Bennett , G. Brassard , S. Popescu , B. Schumacher , J. A. Smolin , and W. K. Wootters , Phys. Rev. Lett. 76 , 722 ( 1996 ). PRLTAO 0031-9007 10.1103/PhysRevLett.76.722 [4] 4 C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , and W. K. Wootters , Phys. Rev. A 54 , 3824 ( 1996 ). PLRAAN 1050-2947 10.1103/PhysRevA.54.3824 [5] 5 C. H. Bennett , G. Brassard , C. Crépeau , R. Jozsa , A. Peres , and W. K. Wootters , Phys. Rev. Lett. 70 , 1895 ( 1993 ). PRLTAO 0031-9007 10.1103/PhysRevLett.70.1895 [6] 6 M. Peev , C. Pacher , and R. Alléaume , New J. Phys. 11 , 075001 ( 2009 ). NJOPFM 1367-2630 10.1088/1367-2630/11/7/075001 [7] 7 M. Sasaki , Opt. Express 19 , 10387 ( 2011 ). OPEXFF 1094-4087 10.1364/OE.19.010387 [8] 8 S. Wang , Opt. Express 22 , 21739 ( 2014 ). OPEXFF 1094-4087 10.1364/OE.22.021739 [9] 9 P. D. Townsend , Nature (London) 385 , 47 ( 1997 ). NATUAS 0028-0836 10.1038/385047a0 [10] 10 B. Fröhlich , J. F. Dynes , M. Lucamarini , A. W. Sharpe , Z. Yuan , and A. J. Shields , Nature (London) 501 , 69 ( 2013 ). NATUAS 0028-0836 10.1038/nature12493 [11] Here “unconstrained capacity” means the capacity without any energy constraint on the input quantum states. [12] 12 A. E. Allahverdyan and D. B. Saakian , arXiv:quant-ph/9805067 . [13] 13 A. Winter , IEEE Trans. Inf. Theory 47 , 3059 ( 2001 ). IETTAW 0018-9448 10.1109/18.959287 [14] 14 S. Guha , J. H. Shapiro , and B. I. Erkmen , Phys. Rev. A 76 , 032303 ( 2007 ). PLRAAN 1050-2947 10.1103/PhysRevA.76.032303 [15] 15 J. Yard , P. Hayden , and I. Devetak , IEEE Trans. Inf. Theory 54 , 3091 ( 2008 ). IETTAW 0018-9448 10.1109/TIT.2008.924665 [16] 16 J. Yard , P. Hayden , and I. Devetak , IEEE Trans. Inf. Theory 57 , 7147 ( 2011 ). IETTAW 0018-9448 10.1109/TIT.2011.2165811 [17] 17 F. Dupuis , P. Hayden , and K. Li , IEEE Trans. Inf. Theory 56 , 2946 ( 2010 ). IETTAW 0018-9448 10.1109/TIT.2010.2046217 [18] 18 K. P. Seshadreesan , M. Takeoka , and M. M. Wilde , IEEE Trans. Inf. Theory 62 , 2849 ( 2016 ). IETTAW 0018-9448 10.1109/TIT.2016.2544803 [19] 19 D. Avis , P. Hayden , and I. Savov , J. Phys. A 41 , 115301 ( 2008 ). JPAMB5 1751-8113 10.1088/1751-8113/41/11/115301 [20] 20 D. Yang , K. Horodecki , M. Horodecki , P. Horodecki , J. Oppenheim , and W. Song , IEEE Trans. Inf. Theory 55 , 3375 ( 2009 ). IETTAW 0018-9448 10.1109/TIT.2009.2021373 [21] 21 M. Takeoka , S. Guha , and M. M. Wilde , Nat. Commun. 5 , 5235 ( 2014 ). NCAOBW 2041-1723 10.1038/ncomms6235 [22] 22 M. Takeoka , S. Guha , and M. M. Wilde , IEEE Trans. Inf. Theory 60 , 4987 ( 2014 ). IETTAW 0018-9448 10.1109/TIT.2014.2330313 [23] 23 S. Pirandola , R. Laurenza , C. Ottaviani , and L. Banchi , arXiv:1510.08863v5 . [24] 24 M. M. Wilde , M. Tomamichel , and M. Berta , IEEE Trans. Inf. Theory 63 , 1792 ( 2017 ). IETTAW 0018-9448 10.1109/TIT.2017.2648825 [25] 25 M. Horodecki , J. Oppenheim , and A. Winter , Nature (London) 436 , 673 ( 2005 ). NATUAS 0028-0836 10.1038/nature03909 [26] 26 M. Horodecki , J. Oppenheim , and A. Winter , Commun. Math. Phys. 269 , 107 ( 2007 ). CMPHAY 0010-3616 10.1007/s00220-006-0118-x [27] 27 K. Horodecki , M. Horodecki , P. Horodecki , and J. Oppenheim , Phys. Rev. Lett. 94 , 160502 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.94.160502 [28] 28 K. Horodecki , M. Horodecki , P. Horodecki , and J. Oppenheim , IEEE Trans. Inf. Theory 55 , 1898 ( 2009 ). IETTAW 0018-9448 10.1109/TIT.2008.2009798 [29] 29 A. Uhlmann , Rep. Math. Phys. 9 , 273 ( 1976 ). RMHPBE 0034-4877 10.1016/0034-4877(76)90060-4 [30] 30 S. Guha , Ph.D. thesis, Massachusetts Institute of Technology , Cambridge, Massachusetts, 2008 . [31] 31 M. M. Wilde , Quantum Information Theory ( Cambridge University Press , Cambridge, 2017 ), 2nd ed . [32] 32 M. Reck , A. Zeilinger , H. J. Bernstein , and P. Bertani , Phys. Rev. Lett. 73 , 58 ( 1994 ). PRLTAO 0031-9007 10.1103/PhysRevLett.73.58 [33] 33 F. G. S. L. Brandao and N. Datta , IEEE Trans. Inf. Theory 57 , 1754 ( 2011 ). IETTAW 0018-9448 10.1109/TIT.2011.2104531 [34] 34 V. Vedral and M. B. Plenio , Phys. Rev. A 57 , 1619 ( 1998 ). PLRAAN 1050-2947 10.1103/PhysRevA.57.1619 [35] 35 F. Hiai and D. Petz , Commun. Math. Phys. 143 , 99 ( 1991 ). CMPHAY 0010-3616 10.1007/BF02100287 [36] 36 F. Buscemi and N. Datta , IEEE Trans. Inf. Theory 56 , 1447 ( 2010 ). IETTAW 0018-9448 10.1109/TIT.2009.2039166 [37] 37 L. Wang and R. Renner , Phys. Rev. Lett. 108 , 200501 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.108.200501 [38] 38 A. Müller-Hermes , Master’s thesis, Technische Universität München , 2012 . [39] 39 J. Niset , J. Fiurášek , and N. Cerf , Phys. Rev. Lett. 102 , 120501 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.102.120501 [40] 40 S. L. Braunstein and H. J. Kimble , Phys. Rev. Lett. 80 , 869 ( 1998 ). PRLTAO 0031-9007 10.1103/PhysRevLett.80.869 [41] 41 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.119.150501 for detailed calculations of the analyses, which includes Refs. [24,42–44]. [42] 42 R. García-Patrón and N. J. Cerf , Phys. Rev. Lett. 102 , 130501 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.102.130501 [43] 43 R. Renner and J. I. Cirac , Phys. Rev. Lett. 102 , 110504 ( 2009 ). PRLTAO 0031-9007 10.1103/PhysRevLett.102.110504 [44] 44 M. Takeoka , R.-b. Jin , and M. Sasaki , New J. Phys. 17 , 043030 ( 2015 ). NJOPFM 1367-2630 10.1088/1367-2630/17/4/043030 [45] In this experiment, the multiple access configuration is chosen to reduce the number of single photon detectors, which is the most expensive component in their protocol, where the simultaneous point-to-point protocol does not work. [46] 46 L. S. Madsen , V. C. Usenko , M. Lassen , R. Filip , and U. L. Andersen , Nat. Commun. 3 , 1083 ( 2012 ). NCAOBW 2041-1723 10.1038/ncomms2097 Publisher Copyright: © 2017 American Physical Society.
PY - 2017/10/13
Y1 - 2017/10/13
N2 - We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
AB - We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.
UR - http://www.scopus.com/inward/record.url?scp=85031319181&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85031319181&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.119.150501
DO - 10.1103/PhysRevLett.119.150501
M3 - Article
C2 - 29077433
AN - SCOPUS:85031319181
SN - 0031-9007
VL - 119
JO - Physical Review Letters
JF - Physical Review Letters
IS - 15
M1 - 150501
ER -