Upper bound for entropy in asymptotically de Sitter space-time

Kengo Maeda, Tatsuhiko Koike, Makoto Narita, Akihiro Ishibashi

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

We investigate the nature of asymptotically de Sitter space-times containing a black hole. We show that if the matter fields satisfy the dominant energy condition and cosmic censorship holds in the considered space-time, the area of the cosmological event horizon for an observer approaching a future timelike infinity does not decrease; i.e., the second law is satisfied. We also show under the same conditions that the total area of the black hole and the cosmological event horizon, a quarter of which is the total Bekenstein-Hawking entropy, is less than 12π/Λ, where Λ is the cosmological constant. The physical implications are also discussed.

Original languageEnglish
Pages (from-to)3503-3508
Number of pages6
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume57
Issue number6
DOIs
Publication statusPublished - 1998 Jan 1

    Fingerprint

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Cite this