### Abstract

Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K_{1,3}'s. The conditions on the minimum degree and on the order of the graph are best possible in a sense.

Original language | English |
---|---|

Pages (from-to) | 225-246 |

Number of pages | 22 |

Journal | Discrete Mathematics |

Volume | 197-198 |

Publication status | Published - 1999 Feb 28 |

### Fingerprint

### Keywords

- Claw
- Minimum degree
- Vertex-disjoint subgraphs

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Discrete Mathematics*,

*197-198*, 225-246.

**Vertex-disjoint claws in graphs.** / Egawa, Yoshimi; Ota, Katsuhiro.

Research output: Contribution to journal › Article

*Discrete Mathematics*, vol. 197-198, pp. 225-246.

}

TY - JOUR

T1 - Vertex-disjoint claws in graphs

AU - Egawa, Yoshimi

AU - Ota, Katsuhiro

PY - 1999/2/28

Y1 - 1999/2/28

N2 - Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K1,3's. The conditions on the minimum degree and on the order of the graph are best possible in a sense.

AB - Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K1,3's. The conditions on the minimum degree and on the order of the graph are best possible in a sense.

KW - Claw

KW - Minimum degree

KW - Vertex-disjoint subgraphs

UR - http://www.scopus.com/inward/record.url?scp=0142115224&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0142115224&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0142115224

VL - 197-198

SP - 225

EP - 246

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

ER -