Vertex-disjoint claws in graphs

Yoshimi Egawa, Katsuhiro Ota

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K1,3's. The conditions on the minimum degree and on the order of the graph are best possible in a sense.

Original languageEnglish
Pages (from-to)225-246
Number of pages22
JournalDiscrete Mathematics
Volume197-198
Publication statusPublished - 1999 Feb 28

Fingerprint

Claw
Disjoint
Minimum Degree
Graph in graph theory
Vertex of a graph
Pairwise
Denote

Keywords

  • Claw
  • Minimum degree
  • Vertex-disjoint subgraphs

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Vertex-disjoint claws in graphs. / Egawa, Yoshimi; Ota, Katsuhiro.

In: Discrete Mathematics, Vol. 197-198, 28.02.1999, p. 225-246.

Research output: Contribution to journalArticle

Egawa, Y & Ota, K 1999, 'Vertex-disjoint claws in graphs', Discrete Mathematics, vol. 197-198, pp. 225-246.
Egawa Y, Ota K. Vertex-disjoint claws in graphs. Discrete Mathematics. 1999 Feb 28;197-198:225-246.
Egawa, Yoshimi ; Ota, Katsuhiro. / Vertex-disjoint claws in graphs. In: Discrete Mathematics. 1999 ; Vol. 197-198. pp. 225-246.
@article{6bfc6cdeaea74a448486360bb33092b3,
title = "Vertex-disjoint claws in graphs",
abstract = "Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K1,3's. The conditions on the minimum degree and on the order of the graph are best possible in a sense.",
keywords = "Claw, Minimum degree, Vertex-disjoint subgraphs",
author = "Yoshimi Egawa and Katsuhiro Ota",
year = "1999",
month = "2",
day = "28",
language = "English",
volume = "197-198",
pages = "225--246",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",

}

TY - JOUR

T1 - Vertex-disjoint claws in graphs

AU - Egawa, Yoshimi

AU - Ota, Katsuhiro

PY - 1999/2/28

Y1 - 1999/2/28

N2 - Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K1,3's. The conditions on the minimum degree and on the order of the graph are best possible in a sense.

AB - Let δ(G) denote the minimum degree of a graph G. We prove that a graph G of order at least 4k + 6 with δ(G) ≥ k + 2 contains k pairwise vertex-disjoint K1,3's. The conditions on the minimum degree and on the order of the graph are best possible in a sense.

KW - Claw

KW - Minimum degree

KW - Vertex-disjoint subgraphs

UR - http://www.scopus.com/inward/record.url?scp=0142115224&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0142115224&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0142115224

VL - 197-198

SP - 225

EP - 246

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

ER -