Walking assistance system for walking stability by using human motion information

Seonghye Kim, Kiichi Hirota, Takahiro Nozaki, Toshiyuki Murakami

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


In an aging society, most of walking assistance device has been researched in an aspect of augmentation system which assists the human walking by torque enough. However the user depends on the performance of assistance device without the independent reliance. Therefore we researched the compensation system which offers the minimum torque required during the human walking. Furthermore the stability of mutual human-device should be ensured due to being the much distribution of user's independent will. Then, the assistance system can react to the human motion through the stability every moment. Therefore we propose the walking assistance system for the walking stability by using the human motion information. The walking assistance system is based on the compensation model and the walking stability is determined by ZMP and COG information for the human motion. To verify the verification of the proposed system, the relation between the ZMP and COG information is analyzed corresponding to the environment for the human motion. And the experiment for the walking assistance system applying the compliance controller is implemented in the two situations which are safe and dangerous.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Mechatronics, ICM 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781509045389
Publication statusPublished - 2017 May 6
Event2017 IEEE International Conference on Mechatronics, ICM 2017 - Gippsland, Australia
Duration: 2017 Feb 132017 Feb 15


Other2017 IEEE International Conference on Mechatronics, ICM 2017


  • Human motion
  • Walking assistance system
  • Walking stability

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Control and Optimization

Fingerprint Dive into the research topics of 'Walking assistance system for walking stability by using human motion information'. Together they form a unique fingerprint.

Cite this