Wearable finger exoskeleton using flexible actuator for rehabilitation

Simon Lemerle, Satoshi Fukushima, Yuki Saito, Takahiro Nozaki, Kouhei Ohnishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)


This paper proposes a new design of a one actuated degree of freedom wearable finger exoskeleton for rehabilitation. The purpose of this device is to assist patients during their rehabilitation process, after neurological trauma such as a stroke. To increase the wearability and adaptability of this system, a flexible actuator, using wire mechanism, has been integrated. Moreover, 3D printers have been used to get a device as light as possible. Position and force control have been implemented. Some tests have been conducted to verify the wearability and the adaptability of the proposed system. Furthermore, measurements to get the range of motion of the rotational movement around the metacarpophalangeal joint, which is actuated, have been conducted. The maximum range of motion of this device is high enough to be considered for using it in rehabilitation process and small enough to ensure the safety of the patient. Moreover, position control and force control can be achieved in limited angular and force range.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Mechatronics, ICM 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781509045389
Publication statusPublished - 2017 May 6
Event2017 IEEE International Conference on Mechatronics, ICM 2017 - Gippsland, Australia
Duration: 2017 Feb 132017 Feb 15


Other2017 IEEE International Conference on Mechatronics, ICM 2017

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Control and Optimization

Fingerprint Dive into the research topics of 'Wearable finger exoskeleton using flexible actuator for rehabilitation'. Together they form a unique fingerprint.

Cite this