TY - JOUR
T1 - Writing in the air
T2 - Contributions of finger movement to cognitive processing
AU - Itaguchi, Yoshihiro
AU - Yamada, Chiharu
AU - Fukuzawa, Kazuyoshi
N1 - Publisher Copyright:
© 2015 Itaguchi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/6/10
Y1 - 2015/6/10
N2 - The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life.
AB - The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life.
UR - http://www.scopus.com/inward/record.url?scp=84936805472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936805472&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0128419
DO - 10.1371/journal.pone.0128419
M3 - Article
C2 - 26061273
AN - SCOPUS:84936805472
SN - 1932-6203
VL - 10
JO - PLoS One
JF - PLoS One
IS - 6
M1 - e0128419
ER -