Zeros of Airy function and relaxation process

Makoto Katori, Hideki Tanemura

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

One-dimensional system of Brownian motions called Dyson's model is the particle system with long-range repulsive forces acting between any pair of particles, where the strength of force is β/2 times the inverse of particle distance. When β=2, it is realized as the Brownian motions in one dimension conditioned never to collide with each other. For any initial configuration, it is proved that Dyson's model with β=2 and N particles, X(t) = (X1(t),...,XN(t)), t ∈ [0, ∞), 2 ≤ N < ∞ is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The Airy function is Ai(z)a n entire function with zeros all located on the negative part of the real axis ℝ. We consider Dyson's model with β=2 starting from the first N zeros of Ai(z), 0 > a1 > ... > aN, N ≥ 2. In order to properly control the effect of such initial confinement of particles in the negative region of ℝ, we put the drift term to each Brownian motion, which increases in time as a parabolic function: Yj(t) = Xj(t)+t2/4+{d1+∑Nl= 1(1/al)}t, 1 ≤ j ≤ N, where d1 = Ai′(0)/Ai(0). We show that, as the N→∞ limit of Y(t) = (y1(t),...,YN(t)), t ∈[0, ∞), we obtain an infinite particle system, which is the relaxation process from the configuration, in which every zero of Ai(z) on the negative ℝ is occupied by one particle, to the stationary state Ai. The stationary state Ai is the determinantal point process with the Airy kernel, which is spatially inhomogeneous on ℝ and in which the Tracy-Widom distribution describes the rightmost particle position.

Original languageEnglish
Pages (from-to)1177-1204
Number of pages28
JournalJournal of Statistical Physics
Volume136
Issue number6
DOIs
Publication statusPublished - 2009 Oct 1
Externally publishedYes

Fingerprint

Airy function
Airy Functions
Zero
Brownian motion
Stationary States
Infinite Particle System
Tracy-Widom Distribution
Configuration
One-dimensional System
Particle System
Point Process
One Dimension
configurations
kernel
Term
Model
Range of data

Keywords

  • Determinantal point process
  • Dyson's model
  • Entire function
  • Relaxation process
  • Weierstrass canonical product
  • Zeros of Airy function

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Cite this

Zeros of Airy function and relaxation process. / Katori, Makoto; Tanemura, Hideki.

In: Journal of Statistical Physics, Vol. 136, No. 6, 01.10.2009, p. 1177-1204.

Research output: Contribution to journalArticle

Katori, Makoto ; Tanemura, Hideki. / Zeros of Airy function and relaxation process. In: Journal of Statistical Physics. 2009 ; Vol. 136, No. 6. pp. 1177-1204.
@article{f37d5e3919dd46bfaa5e2a3e90845807,
title = "Zeros of Airy function and relaxation process",
abstract = "One-dimensional system of Brownian motions called Dyson's model is the particle system with long-range repulsive forces acting between any pair of particles, where the strength of force is β/2 times the inverse of particle distance. When β=2, it is realized as the Brownian motions in one dimension conditioned never to collide with each other. For any initial configuration, it is proved that Dyson's model with β=2 and N particles, X(t) = (X1(t),...,XN(t)), t ∈ [0, ∞), 2 ≤ N < ∞ is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The Airy function is Ai(z)a n entire function with zeros all located on the negative part of the real axis ℝ. We consider Dyson's model with β=2 starting from the first N zeros of Ai(z), 0 > a1 > ... > aN, N ≥ 2. In order to properly control the effect of such initial confinement of particles in the negative region of ℝ, we put the drift term to each Brownian motion, which increases in time as a parabolic function: Yj(t) = Xj(t)+t2/4+{d1+∑Nl= 1(1/al)}t, 1 ≤ j ≤ N, where d1 = Ai′(0)/Ai(0). We show that, as the N→∞ limit of Y(t) = (y1(t),...,YN(t)), t ∈[0, ∞), we obtain an infinite particle system, which is the relaxation process from the configuration, in which every zero of Ai(z) on the negative ℝ is occupied by one particle, to the stationary state Ai. The stationary state Ai is the determinantal point process with the Airy kernel, which is spatially inhomogeneous on ℝ and in which the Tracy-Widom distribution describes the rightmost particle position.",
keywords = "Determinantal point process, Dyson's model, Entire function, Relaxation process, Weierstrass canonical product, Zeros of Airy function",
author = "Makoto Katori and Hideki Tanemura",
year = "2009",
month = "10",
day = "1",
doi = "10.1007/s10955-009-9829-7",
language = "English",
volume = "136",
pages = "1177--1204",
journal = "Journal of Statistical Physics",
issn = "0022-4715",
publisher = "Springer New York",
number = "6",

}

TY - JOUR

T1 - Zeros of Airy function and relaxation process

AU - Katori, Makoto

AU - Tanemura, Hideki

PY - 2009/10/1

Y1 - 2009/10/1

N2 - One-dimensional system of Brownian motions called Dyson's model is the particle system with long-range repulsive forces acting between any pair of particles, where the strength of force is β/2 times the inverse of particle distance. When β=2, it is realized as the Brownian motions in one dimension conditioned never to collide with each other. For any initial configuration, it is proved that Dyson's model with β=2 and N particles, X(t) = (X1(t),...,XN(t)), t ∈ [0, ∞), 2 ≤ N < ∞ is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The Airy function is Ai(z)a n entire function with zeros all located on the negative part of the real axis ℝ. We consider Dyson's model with β=2 starting from the first N zeros of Ai(z), 0 > a1 > ... > aN, N ≥ 2. In order to properly control the effect of such initial confinement of particles in the negative region of ℝ, we put the drift term to each Brownian motion, which increases in time as a parabolic function: Yj(t) = Xj(t)+t2/4+{d1+∑Nl= 1(1/al)}t, 1 ≤ j ≤ N, where d1 = Ai′(0)/Ai(0). We show that, as the N→∞ limit of Y(t) = (y1(t),...,YN(t)), t ∈[0, ∞), we obtain an infinite particle system, which is the relaxation process from the configuration, in which every zero of Ai(z) on the negative ℝ is occupied by one particle, to the stationary state Ai. The stationary state Ai is the determinantal point process with the Airy kernel, which is spatially inhomogeneous on ℝ and in which the Tracy-Widom distribution describes the rightmost particle position.

AB - One-dimensional system of Brownian motions called Dyson's model is the particle system with long-range repulsive forces acting between any pair of particles, where the strength of force is β/2 times the inverse of particle distance. When β=2, it is realized as the Brownian motions in one dimension conditioned never to collide with each other. For any initial configuration, it is proved that Dyson's model with β=2 and N particles, X(t) = (X1(t),...,XN(t)), t ∈ [0, ∞), 2 ≤ N < ∞ is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel. The Airy function is Ai(z)a n entire function with zeros all located on the negative part of the real axis ℝ. We consider Dyson's model with β=2 starting from the first N zeros of Ai(z), 0 > a1 > ... > aN, N ≥ 2. In order to properly control the effect of such initial confinement of particles in the negative region of ℝ, we put the drift term to each Brownian motion, which increases in time as a parabolic function: Yj(t) = Xj(t)+t2/4+{d1+∑Nl= 1(1/al)}t, 1 ≤ j ≤ N, where d1 = Ai′(0)/Ai(0). We show that, as the N→∞ limit of Y(t) = (y1(t),...,YN(t)), t ∈[0, ∞), we obtain an infinite particle system, which is the relaxation process from the configuration, in which every zero of Ai(z) on the negative ℝ is occupied by one particle, to the stationary state Ai. The stationary state Ai is the determinantal point process with the Airy kernel, which is spatially inhomogeneous on ℝ and in which the Tracy-Widom distribution describes the rightmost particle position.

KW - Determinantal point process

KW - Dyson's model

KW - Entire function

KW - Relaxation process

KW - Weierstrass canonical product

KW - Zeros of Airy function

UR - http://www.scopus.com/inward/record.url?scp=70350786396&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70350786396&partnerID=8YFLogxK

U2 - 10.1007/s10955-009-9829-7

DO - 10.1007/s10955-009-9829-7

M3 - Article

AN - SCOPUS:70350786396

VL - 136

SP - 1177

EP - 1204

JO - Journal of Statistical Physics

JF - Journal of Statistical Physics

SN - 0022-4715

IS - 6

ER -