メインナビゲーションにスキップ
検索にスキップ
メインコンテンツにスキップ
Keio University ホーム
ヘルプ&FAQ
English
日本語
ホーム
プロファイル
研究部門
研究成果
専門知識、名前、または所属機関で検索
Scopus著者プロファイル
成島 康史
管理工学科
ウェブサイト
https://k-ris.keio.ac.jp/html/100014909_ja.html
h-index
466
被引用数
11
h 指数
Pureの文献数とScopusの被引用数に基づいて算出されます
2006
2023
年別の研究成果
概要
フィンガープリント
ネットワーク
研究成果
(28)
類似のプロファイル
(6)
Pureに変更を加えた場合、すぐここに表示されます。
研究成果
年別の研究成果
2006
2011
2012
2013
2023
27
Article
1
Conference contribution
年別の研究成果
年別の研究成果
27 件
出版年、タイトル
(降順)
出版年、タイトル
(昇順)
タイトル
タイプ
フィルター
Article
検索結果
2023
A PROXIMAL QUASI-NEWTON METHOD BASED ON MEMORYLESS MODIFIED SYMMETRIC RANK-ONE FORMULA
Narushima, Y.
&
Nakayama, S.
,
2023 6月
,
In:
Journal of Industrial and Management Optimization.
19
,
6
,
p. 4095-4111
17 p.
研究成果
:
Article
›
査読
Open Access
Proximal Methods
100%
Quasi-Newton
97%
Quasi-Newton Method
94%
Newton-Raphson method
83%
Proximal Mapping
75%
Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization
Narushima, Y.
,
Nakayama, S.
,
Takemura, M.
&
Yabe, H.
,
2023 5月
,
In:
Journal of Optimization Theory and Applications.
197
,
2
,
p. 639-664
26 p.
研究成果
:
Article
›
査読
Conjugate gradient method
100%
Quasi-Newton Method
98%
Scaling
93%
Newton-Raphson method
87%
Optimization
59%
2021
An active-set memoryless quasi-Newton method based on a spectral-scaling Broyden family for bound constrained optimization
Nakayama, S.
,
Narushima, Y.
,
Nishio, H.
&
Yabe, H.
,
2021 6月
,
In:
Results in Control and Optimization.
3
, 100012.
研究成果
:
Article
›
査読
Open Access
Active Set Method
100%
Quasi-Newton Method
83%
Constrained Optimization
75%
Newton-Raphson method
73%
Constrained optimization
72%
4
被引用数 (Scopus)
Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions
Nakayama, S.
,
Narushima, Y.
&
Yabe, H.
,
2021 5月
,
In:
Computational Optimization and Applications.
79
,
1
,
p. 127-154
28 p.
研究成果
:
Article
›
査読
Proximal Methods
100%
Composite function
97%
Quasi-Newton Method
94%
Newton-Raphson method
83%
Objective function
47%
5
被引用数 (Scopus)
2019
Memoryless quasi-newton methods based on spectral-scaling broyden family for unconstrained optimization
Nakayama, S.
,
Narushima, Y.
&
Yabe, H.
,
2019
,
In:
Journal of Industrial and Management Optimization.
15
,
4
,
p. 1773-1793
21 p.
研究成果
:
Article
›
査読
Open Access
Quasi-Newton Method
100%
Scaling
95%
Unconstrained Optimization
88%
Newton-Raphson method
88%
Spectrality
59%
3
被引用数 (Scopus)
Robust supply chain network equilibrium model
Hirano, T.
&
Narushima, Y.
,
2019
,
In:
Transportation Science.
53
,
4
,
p. 1196-1212
17 p.
研究成果
:
Article
›
査読
equilibrium model
100%
Network Equilibrium
91%
Supply Chain Network
71%
Supply chains
65%
Variational Inequalities
34%
4
被引用数 (Scopus)
2018
A memoryless symmetric rank-one method with sufficient descent property for unconstrained optimization
Nakayama, S.
,
Narushima, Y.
&
Yabe, H.
,
2018 1月
,
In:
Journal of the Operations Research Society of Japan.
61
,
1
,
p. 53-70
18 p.
研究成果
:
Article
›
査読
Open Access
Optimization Problem
100%
Large-scale Optimization
93%
Scaling
64%
Objective Function
50%
Matrix
48%
10
被引用数 (Scopus)
2017
Descent three-term conjugate gradient methods based on secant conditions for unconstrained optimization
Kobayashi, H.
,
Narushima, Y.
&
Yabe, H.
,
2017 11月 2
,
In:
Optimization Methods and Software.
32
,
6
,
p. 1313-1329
17 p.
研究成果
:
Article
›
査読
Conjugate gradient method
100%
Unconstrained Optimization
87%
Chord or secant line
85%
Conjugate Gradient Method
85%
Descent
79%
10
被引用数 (Scopus)
2014
A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization
Al-Baali, M.
,
Narushima, Y.
&
Yabe, H.
,
2014 1月
,
In:
Computational Optimization and Applications.
60
,
1
,
p. 89-110
22 p.
研究成果
:
Article
›
査読
Conjugate gradient method
100%
Unconstrained Optimization
87%
Conjugate Gradient Method
85%
Descent
79%
Sufficient
58%
42
被引用数 (Scopus)
A survey of sufficient descent conjugate gradient methods for unconstrained optimization
Narushima, Y.
&
Yabe, H.
,
2014 1月 1
,
In:
SUT Journal of Mathematics.
50
,
2
,
p. 167-203
37 p.
研究成果
:
Article
›
査読
Unconstrained Optimization
100%
Conjugate Gradient Method
97%
Descent
90%
Sufficient
66%
Large-scale Optimization
39%
19
被引用数 (Scopus)
2013
A smoothing conjugate gradient method for solving systems of nonsmooth equations
Narushima, Y.
,
2013
,
In:
Applied Mathematics and Computation.
219
,
16
,
p. 8646-8655
10 p.
研究成果
:
Article
›
査読
Nonsmooth Equations
100%
Conjugate gradient method
92%
Conjugate Gradient Method
78%
Smoothing
66%
Numerical methods
64%
7
被引用数 (Scopus)
A smoothing method with appropriate parameter control based on Fischer-Burmeister function for second-order cone complementarity problems
Narushima, Y.
,
Ogasawara, H.
&
Hayashi, S.
,
2013
,
In:
Abstract and Applied Analysis.
2013
, 830698.
研究成果
:
Article
›
査読
Open Access
Second-order Cone
100%
Smoothing Methods
96%
Complementarity Problem
89%
Control Parameter
83%
Newton-Raphson method
83%
3
被引用数 (Scopus)
Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization
Nakamura, W.
,
Narushima, Y.
&
Yabe, H.
,
2013
,
In:
Journal of Industrial and Management Optimization.
9
,
3
,
p. 595-619
25 p.
研究成果
:
Article
›
査読
Open Access
Conjugate gradient method
100%
Global Convergence
90%
Unconstrained Optimization
87%
Gradient
86%
Conjugate Gradient Method
85%
14
被引用数 (Scopus)
2012
Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization
Narushima, Y.
&
Yabe, H.
,
2012 11月
,
In:
Journal of Computational and Applied Mathematics.
236
,
17
,
p. 4303-4317
15 p.
研究成果
:
Article
›
査読
Open Access
Conjugate gradient method
100%
Unconstrained Optimization
87%
Chord or secant line
85%
Conjugate Gradient Method
85%
Descent
79%
38
被引用数 (Scopus)
Conjugate gradient methods using value of objective function for unconstrained optimization
Iiduka, H.
&
Narushima, Y.
,
2012 6月
,
In:
Optimization Letters.
6
,
5
,
p. 941-955
15 p.
研究成果
:
Article
›
査読
Unconstrained Optimization
100%
Gradient
98%
Conjugate Gradient Method
97%
Objective Function
83%
Objective function
75%
15
被引用数 (Scopus)
Global and superlinear convergence of inexact sequential quadratically constrained quadratic programming method for convex programming
Kato, A.
,
Narushima, Y.
&
Yabe, H.
,
2012 7月 1
,
In:
Pacific Journal of Optimization.
8
,
3
,
p. 609-629
21 p.
研究成果
:
Article
›
査読
Superlinear Convergence
100%
Convex Programming
95%
Quadratic programming
94%
Quadratic Programming
92%
Convex optimization
89%
2
被引用数 (Scopus)
Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization
Sugiki, K.
,
Narushima, Y.
&
Yabe, H.
,
2012 6月
,
In:
Journal of Optimization Theory and Applications.
153
,
3
,
p. 733-757
25 p.
研究成果
:
Article
›
査読
Conjugate gradient method
100%
Unconstrained Optimization
87%
Gradient
86%
Chord or secant line
85%
Conjugate Gradient Method
85%
65
被引用数 (Scopus)
The Jacobian consistency of a smoothed Fischer-Burmeister function associated with second-order cones
Ogasawara, H.
&
Narushima, Y.
,
2012 10月 1
,
In:
Journal of Mathematical Analysis and Applications.
394
,
1
,
p. 231-247
17 p.
研究成果
:
Article
›
査読
Open Access
Nonsmooth Equations
100%
Second-order Cone
95%
Complementarity Problem
85%
Cones
68%
Smoothing Newton Method
53%
5
被引用数 (Scopus)
2011
A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
Narushima, Y.
,
Sagara, N.
&
Ogasawara, H.
,
2011 2月
,
In:
Journal of Optimization Theory and Applications.
149
,
1
,
p. 79-101
23 p.
研究成果
:
Article
›
査読
Smoothing Newton Method
100%
Second-order Cone
90%
Complementarity Problem
80%
Complementarity
76%
Newton-Raphson method
75%
25
被引用数 (Scopus)
A three-term conjugate gradient method with sufficient descent property for unconstrained optimization
Narushima, Y.
,
Yabe, H.
&
Ford, J. A.
,
2011
,
In:
SIAM Journal on Optimization.
21
,
1
,
p. 212-230
19 p.
研究成果
:
Article
›
査読
Conjugate gradient method
100%
Unconstrained Optimization
87%
Conjugate Gradient Method
85%
Descent
79%
Sufficient
58%
96
被引用数 (Scopus)
Symmetric rank-one method based on some modified secant conditions for unconstrained optimization
Narushima, Y.
,
2011 12月 1
,
In:
SUT Journal of Mathematics.
47
,
1
,
p. 25-43
19 p.
研究成果
:
Article
›
査読
Unconstrained Optimization
100%
Chord or secant line
97%
Quasi-Newton Method
37%
Trust Region Method
19%
Accelerate
16%
2010
Extended Barzilai-Borwein method for unconstrained minimization problems
Narushima, Y.
,
Wakamatsu, T.
&
Yabe, H.
,
2010 11月 9
,
In:
Pacific Journal of Optimization.
6
,
3
,
p. 591-613
23 p.
研究成果
:
Article
›
査読
Unconstrained Minimization
100%
Minimization Problem
72%
Steepest descent method
48%
Gradient methods
46%
Steepest Descent Method
16%
6
被引用数 (Scopus)
Nonlinear conjugate gradient methods with structured secant condition for nonlinear least squares problems
Kobayashi, M.
,
Narushima, Y.
&
Yabe, H.
,
2010 5月 15
,
In:
Journal of Computational and Applied Mathematics.
234
,
2
,
p. 375-397
23 p.
研究成果
:
Article
›
査読
Open Access
Nonlinear Least Squares Problem
100%
Conjugate gradient method
92%
Chord or secant line
78%
Conjugate Gradient Method
78%
Newton-Raphson method
53%
22
被引用数 (Scopus)
2008
Multi-step nonlinear conjugate gradient methods for unconstrained minimization
Ford, J. A.
,
Narushima, Y.
&
Yabe, H.
,
2008 6月 1
,
In:
Computational Optimization and Applications.
40
,
2
,
p. 191-216
26 p.
研究成果
:
Article
›
査読
Unconstrained Minimization
100%
Conjugate gradient method
98%
Conjugate Gradient Method
83%
Chord or secant line
63%
Large-scale Optimization
25%
43
被引用数 (Scopus)
2007
A nonmonotone memory gradient method for unconstrained optimization
Narushima, Y.
,
2007 3月
,
In:
Journal of the Operations Research Society of Japan.
50
,
1
,
p. 31-45
15 p.
研究成果
:
Article
›
査読
Open Access
Gradient
100%
Large-scale Optimization
25%
Search Strategy
18%
Objective Function
14%
2
被引用数 (Scopus)
2006
A memory gradient method without line search for unconstrained optimization
Narushima, Y.
,
2006 12月 1
,
In:
SUT Journal of Mathematics.
42
,
2
,
p. 191-206
16 p.
研究成果
:
Article
›
査読
Gradient Method
100%
Line Search
99%
Unconstrained Optimization
99%
Sun
51%
Search Strategy
30%
3
被引用数 (Scopus)
Global convergence of a memory gradient method for unconstrained optimization
Narushima, Y.
&
Yabe, H.
,
2006 11月
,
In:
Computational Optimization and Applications.
35
,
3
,
p. 325-346
22 p.
研究成果
:
Article
›
査読
Gradient methods
100%
Gradient Method
92%
Unconstrained Optimization
92%
Global Convergence
78%
Data storage equipment
50%
23
被引用数 (Scopus)