λ-backbone colorings along pairwise disjoint stars and matchings

H. J. Broersma, J. Fujisawa, L. Marchal, D. Paulusma, A. N.M. Salman, K. Yoshimoto

研究成果: Article査読

18 被引用数 (Scopus)

抄録

Given an integer λ ≥ 2, a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G, H) is a proper vertex coloring V → {1, 2, ...} of G, in which the colors assigned to adjacent vertices in H differ by at least λ. We study the case where the backbone is either a collection of pairwise disjoint stars or a matching. We show that for a star backbone S of G the minimum number ℓ for which a λ-backbone coloring of (G, S) with colors in {1, ..., ℓ} exists can roughly differ by a multiplicative factor of at most 2 - frac(1, λ) from the chromatic number χ (G). For the special case of matching backbones this factor is roughly 2 - frac(2, λ + 1). We also show that the computational complexity of the problem "Given a graph G with a star backbone S, and an integer ℓ, is there a λ-backbone coloring of (G, S) with colors in {1, ..., ℓ}?" jumps from polynomially solvable to NP-complete between ℓ = λ + 1 and ℓ = λ + 2 (the case ℓ = λ + 2 is even NP-complete for matchings). We finish the paper by discussing some open problems regarding planar graphs.

本文言語English
ページ(範囲)5596-5609
ページ数14
ジャーナルDiscrete Mathematics
309
18
DOI
出版ステータスPublished - 2009 9月 28
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「λ-backbone colorings along pairwise disjoint stars and matchings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル