π-complex formation in electron-transfer reactions of porphyrins

Shunichi Fukuzumi, Taku Hasobe, Kei Ohkubo, Maxwell J. Crossley, Prashant V. Kamat, Hiroshi Imahori

研究成果: Short survey査読

13 被引用数 (Scopus)

抄録

π-Complex formation between porphyrins and their radical cations plays an important role in self-exchange electron transfer between neutral porphyrins and the radical cations, leading to negative activation enthalpies when the stabilization energy of the π-complex is larger than the activation energy for the intracomplex electron transfer in the π-complex. A number of porphyrin molecules are self-organized on three-dimensional gold nanoclusters to form monolayer-protected gold nanoclusters (MPCs) that act as an efficient photocatalyst for the uphill reduction of HV2+ by BNAH to produce l-benzylnicotinamidinium ion (BNA+) and hexyl viologen radical cation (HV.+). Such three-dimensional architectures of porphyrin MPCs with large surface area allow supramolecular π-complexation between MPCs and HV+2, resulting in fast electron transfer from the singlet excited state of porphyrin to HV2+ on MPCs. The π-π interaction is exploited to develop efficient photovoltaic devices consisting of porphyrin and fullerene assemblies which have an enhanced light-harvesting efficiency throughout the solar spectrum together with a highly efficient conversion of the harvested light into electrical energy.

本文言語English
ページ(範囲)191-200
ページ数10
ジャーナルJournal of Porphyrins and Phthalocyanines
8
1-3
DOI
出版ステータスPublished - 2004
外部発表はい

ASJC Scopus subject areas

  • Chemistry(all)

フィンガープリント 「π-complex formation in electron-transfer reactions of porphyrins」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル