抄録
π-Complex formation between porphyrins and their radical cations plays an important role in self-exchange electron transfer between neutral porphyrins and the radical cations, leading to negative activation enthalpies when the stabilization energy of the π-complex is larger than the activation energy for the intracomplex electron transfer in the π-complex. A number of porphyrin molecules are self-organized on three-dimensional gold nanoclusters to form monolayer-protected gold nanoclusters (MPCs) that act as an efficient photocatalyst for the uphill reduction of HV2+ by BNAH to produce l-benzylnicotinamidinium ion (BNA+) and hexyl viologen radical cation (HV.+). Such three-dimensional architectures of porphyrin MPCs with large surface area allow supramolecular π-complexation between MPCs and HV+2, resulting in fast electron transfer from the singlet excited state of porphyrin to HV2+ on MPCs. The π-π interaction is exploited to develop efficient photovoltaic devices consisting of porphyrin and fullerene assemblies which have an enhanced light-harvesting efficiency throughout the solar spectrum together with a highly efficient conversion of the harvested light into electrical energy.
本文言語 | English |
---|---|
ページ(範囲) | 191-200 |
ページ数 | 10 |
ジャーナル | Journal of Porphyrins and Phthalocyanines |
巻 | 8 |
号 | 1-3 |
DOI | |
出版ステータス | Published - 2004 |
外部発表 | はい |
ASJC Scopus subject areas
- Chemistry(all)