2-connected 7-coverings of 3-connected graphs on surfaces

Ken Ichi Kawarabayashi, Atsuhiro Nakamoto, Katsuhiro Ota

研究成果: Article査読

5 被引用数 (Scopus)

抄録

An m-covering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3-connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2-connected 7-covering with at most 6k - 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3-connected graph G on F2 with arbitrarily large representativity each of whose 2-connected 7-coverings contains at least 6k - 12 vertices of degree 7.

本文言語English
ページ(範囲)26-36
ページ数11
ジャーナルJournal of Graph Theory
43
1
DOI
出版ステータスPublished - 2003 5

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「2-connected 7-coverings of 3-connected graphs on surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル