26 near-field optical spectroscopy of single quantum constituents

研究成果: Article査読

抄録

The remarkable progress in spatial resolution of near-field scanning optical microscopy offers the possibility of unique interactions between light and matter at the nanoscale. In this chapter, we describe the development of a high-resolution near-field scanning optical microscope with a carefully designed aperture probe and near-field imaging spectroscopy of quantum confined systems. Thanks to a spatial resolution as high as 10–30 nm, we successfully visualize spatial profiles of local density of states and wavefunctions of electrons (excitons) confined in semiconductor quantum dots. Fundamental aspects of localized and delocalized electrons in interface and alloy disorder systems are also clarified through spatial and energy-resolved spectroscopy.

本文言語English
ページ(範囲)351-372
ページ数22
ジャーナルNanoScience and Technology
出版ステータスPublished - 2018 1 1

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 電子工学および電気工学

フィンガープリント

「26 near-field optical spectroscopy of single quantum constituents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル