3-Dimensional object recognition by evolutional RBF network

Hideki Matsuda, Yasue Mitsukura, Minoru Fukumi, Norio Akamatsu

研究成果: Conference article査読


This paper tries to recognize 3-dimensional objects by using an evolutional RBF network. Our proposed RBF network has the structure of preparing four RBFs for each hidden layer unit, selecting based on the Euclid distance between an input image and RBF. This structure can be invariant to 2- dimensional rotation by 90 degree. The other rotational invariance can be achieved by the RBF network. In hidden layer units, the number of RBFs, form, and arrangement are determined using real-coded GA. Computer simulations show object recognition can be done using such a method.

ジャーナルLecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
2773 PART 1
出版ステータスPublished - 2003 12月 1
イベント7th International Conference, KES 2003 - Oxford, United Kingdom
継続期間: 2003 9月 32003 9月 5

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)


「3-Dimensional object recognition by evolutional RBF network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。