抄録
This paper tries to recognize 3-dimensional objects by using an evolutional RBF network. Our proposed RBF network has the structure of preparing four RBFs for each hidden layer unit, selecting based on the Euclid distance between an input image and RBF. This structure can be invariant to 2- dimensional rotation by 90 degree. The other rotational invariance can be achieved by the RBF network. In hidden layer units, the number of RBFs, form, and arrangement are determined using real-coded GA. Computer simulations show object recognition can be done using such a method.
本文言語 | English |
---|---|
ページ(範囲) | 556-562 |
ページ数 | 7 |
ジャーナル | Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) |
巻 | 2773 PART 1 |
出版ステータス | Published - 2003 12月 1 |
外部発表 | はい |
イベント | 7th International Conference, KES 2003 - Oxford, United Kingdom 継続期間: 2003 9月 3 → 2003 9月 5 |
ASJC Scopus subject areas
- 理論的コンピュータサイエンス
- コンピュータ サイエンス(全般)