3D human body modeling using range data

Koichiro Yamauchi, Bir Bhanu, Hideo Saito

研究成果: Conference contribution

抜粋

For the 3D modeling of walking humans the determination of body pose and extraction of body parts, from the sensed 3D range data, are challenging image processing problems. Real body data may have holes because of self-occlusions and grazing angle views. Most of the existing modeling methods rely on direct fitting a 3D model into the data without considering the fact that the parts in an image are indeed the human body parts. In this paper, we present a method for 3D human body modeling using range data that attempts to overcome these problems. In our approach the entire human body is first decomposed into major body parts by a parts-based image segmentation method, and then a kinematics model is fitted to the segmented body parts in an optimized manner. The fitted model is adjusted by the iterative closest point (ICP) algorithm to resolve the gaps in the body data. Experimental results and comparisons demonstrate the effectiveness of our approach.

元の言語English
ホスト出版物のタイトルProceedings - 2010 20th International Conference on Pattern Recognition, ICPR 2010
ページ3476-3479
ページ数4
DOI
出版物ステータスPublished - 2010 11 18
イベント2010 20th International Conference on Pattern Recognition, ICPR 2010 - Istanbul, Turkey
継続期間: 2010 8 232010 8 26

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
ISSN(印刷物)1051-4651

Other

Other2010 20th International Conference on Pattern Recognition, ICPR 2010
Turkey
Istanbul
期間10/8/2310/8/26

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

フィンガープリント 3D human body modeling using range data' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Yamauchi, K., Bhanu, B., & Saito, H. (2010). 3D human body modeling using range data. : Proceedings - 2010 20th International Conference on Pattern Recognition, ICPR 2010 (pp. 3476-3479). [5597543] (Proceedings - International Conference on Pattern Recognition). https://doi.org/10.1109/ICPR.2010.849