抄録
Crowdedness of buses is playing an increasingly important role in the disease control of COVID-19. The lack of a practical approach to sensing the crowdedness of buses is a major problem. This paper proposes a bus crowdedness sensing system which exploits deep learningbased object detection to count the numbers of passengers getting on and off a bus and thus estimate the crowdedness of buses in real time. In our prototype system, we combine YOLOv5s object detection model with Kalman Filter object tracking algorithm to implement a sensing algorithm running on a Jetson nano-based vehicular device mounted on a bus. By using the driving recorder video data taken from real bus, we experimentally evaluate the performance of the proposed sensing system to verify that our proposed system system improves counting accuracy and achieves real-time processing at the Jetson Nano platform.
本文言語 | English |
---|---|
ページ(範囲) | 1712-1720 |
ページ数 | 9 |
ジャーナル | IEICE Transactions on Information and Systems |
巻 | E105D |
号 | 10 |
DOI | |
出版ステータス | Published - 2022 10月 |
ASJC Scopus subject areas
- ソフトウェア
- ハードウェアとアーキテクチャ
- コンピュータ ビジョンおよびパターン認識
- 電子工学および電気工学
- 人工知能