A characterization and an impossibility of finite length anonymity for infinite generations

研究成果: Article査読

4 被引用数 (Scopus)

抄録

In the context of ranking infinite utility streams, the impartiality axiom of finite length anonymity requires the equal ranking of any two utility streams that are equal up to a finite length permutation (Fleurbaey and Michel, 2003). We first characterize any finite length permutation as a composition of a fixed step permutation and an "almost" fixed step permutation. We then show that if a binary relation satisfies finite length anonymity, then it violates all the distributional axioms that are based on a segment-wise comparison. Examples of those axioms include the weak Pareto principle and the weak Pigou-Dalton principle.

本文言語English
ページ(範囲)877-883
ページ数7
ジャーナルJournal of Mathematical Economics
46
5
DOI
出版ステータスPublished - 2010 9月 20
外部発表はい

ASJC Scopus subject areas

  • 経済学、計量経済学
  • 応用数学

フィンガープリント

「A characterization and an impossibility of finite length anonymity for infinite generations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル