A comparison of chromosome repair kinetics in G0 and G1 reveals that enhanced repair fidelity under noncycling conditions accounts for increased potentially lethal damage repair

Cuihua Liu, Tetsuya Kawata, Naoyuki Shigematsu, Francis Cucinotta, Kerry George, Masayoshi Saito, Takashi Uno, Kouichi Isobe, Hisao Ito

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Potentially lethal damage (PLD) and its repair were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining and misrejoining in irradiated cells that were either held in noncycling G0 phase or allowed to enter G1 phase of the cell cycle immediately after 6 Gy irradiation. Virally mediated premature chromosome condensation (PCC) methods were combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. Flow cytometry revealed that the vast majority of cells had not yet entered S phase 15 h after release from G0. By this time some 95 of initially produced prematurely condensed chromosome breaks had rejoined, indicating that most repair processes occurred during G1. The rejoining kinetics of prematurely condensed chromosome breaks was similar for each culture condition. However, under noncycling conditions misrepair peaked at 0.55 exchanges per cell, while under cycling conditions (G1) it peaked at 1.1 exchanges per cell. At 12 h postirradiation, complex-type exchanges were sevenfold more abundant for cycling cells (G1) than for noncycling cells (G0). Since most repair in G0/G1 occurs via the non-homologous end-joining (NHEJ) process, increased PLD repair may result from improved cell cycle-specific rejoining fidelity of the NHEJ pathway.

本文言語English
ページ(範囲)566-573
ページ数8
ジャーナルRadiation Research
174
5
DOI
出版ステータスPublished - 2010 11 1

ASJC Scopus subject areas

  • 生物理学
  • 放射線
  • 放射線学、核医学およびイメージング

フィンガープリント

「A comparison of chromosome repair kinetics in G0 and G1 reveals that enhanced repair fidelity under noncycling conditions accounts for increased potentially lethal damage repair」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル