TY - JOUR
T1 - A design of apparent-age estimation system by the empirical mode decomposition
AU - Fukai, Hironobu
AU - Takimoto, Hironori
AU - Mitsukura, Yasue
AU - Tanaka, Toshihisa
AU - Fukumi, Minoru
PY - 2009/12/1
Y1 - 2009/12/1
N2 - Recently, the automation of the age estimation technique is hoped for in various fields. Therefore, we propose an apparent-age estimation system using empirical mode decomposition (EMD). Conventional study reported that the time-frequency features are important for age estimation. However, these cannot necessarily extract the time-frequency feature in detail, because the classical technique that have a relationship of trade-off between the time resolution and the frequency resolution are used. On the other hand, the EMD is the novel time-frequency analysis technique that do not have the relationship of trade-off between the time resolution and the frequency resolution. The EMD gives a time-frequency analysis decomposing a signal into several intrinsic mode functions (IMFs). The IMF together with their Hilbert transforms are called the HilbertHuang spectrum, which leads to instantaneous frequency and amplitude. We use these features effectively for extracting human's age perception. We estimate the age by a neural network that learns pairs of face image and the HilbertHuang spectrum. Furthermore, we compress the data for neural network by using the simple principal component analysis (SPCA). In order to show the effectiveness of the proposed method, computer simulations are done by the actual human data.
AB - Recently, the automation of the age estimation technique is hoped for in various fields. Therefore, we propose an apparent-age estimation system using empirical mode decomposition (EMD). Conventional study reported that the time-frequency features are important for age estimation. However, these cannot necessarily extract the time-frequency feature in detail, because the classical technique that have a relationship of trade-off between the time resolution and the frequency resolution are used. On the other hand, the EMD is the novel time-frequency analysis technique that do not have the relationship of trade-off between the time resolution and the frequency resolution. The EMD gives a time-frequency analysis decomposing a signal into several intrinsic mode functions (IMFs). The IMF together with their Hilbert transforms are called the HilbertHuang spectrum, which leads to instantaneous frequency and amplitude. We use these features effectively for extracting human's age perception. We estimate the age by a neural network that learns pairs of face image and the HilbertHuang spectrum. Furthermore, we compress the data for neural network by using the simple principal component analysis (SPCA). In order to show the effectiveness of the proposed method, computer simulations are done by the actual human data.
KW - Age estimation
KW - Empirical mode decomposition (EMD)
KW - Neural network (NN)
KW - Simple principal component analysis (SPCA)
UR - http://www.scopus.com/inward/record.url?scp=71749111159&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71749111159&partnerID=8YFLogxK
U2 - 10.1142/S0218126609005800
DO - 10.1142/S0218126609005800
M3 - Article
AN - SCOPUS:71749111159
SN - 0218-1266
VL - 18
SP - 1481
EP - 1492
JO - Journal of Circuits, Systems and Computers
JF - Journal of Circuits, Systems and Computers
IS - 8
ER -