A distributed traffic control scheme for large-scale multi-stage ATM switching systems

Kohei Nakalt, Éiji Oku, Naoaki Yamanaka

研究成果: Article査読

1 被引用数 (Scopus)

抄録

This paper describes a distributed traffic control scheme for large multi-stage ATM switching systems. When a new virtual circuit is to be added from some source lineinterface unit (LU) to a destination LU, the system must find an optimal path through the system to accommodate the new circuit. Conventional systems have a central control processor and control lines to manage the bandwidth of all the links in the systems. The central control processor handles all the virtual circuits, but have trouble doing this when the switching system becomes large because of the limited ability of the central processor to handle the number of virtual circuits. A large switching system with Tbit/s-class throughput requires a distributed traffic control scheme. In our proposed switching system, each port of the basic switches has its own traffic monitor. Operation, administration, and maintenance (OAM) cells that are defined inside the system carry the path-congestion information to the LUs, enabling each LU to route new virtual circuits independently. A central control processor and control lines are not required. The performance of the proposed system depends on the interval between OAM cells. This paper shows how an optimal interval can ( be determined in order to maximize the bandwidth for user cells. This traffic control scheme will suit future Tbit/s ATM switching systems.

本文言語English
ページ(範囲)231-236
ページ数6
ジャーナルIEICE Transactions on Communications
E83-B
2
出版ステータスPublished - 2000 1 1
外部発表はい

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

フィンガープリント 「A distributed traffic control scheme for large-scale multi-stage ATM switching systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル