A general two-sided matching market with discrete concave utility functions

Satoru Fujishige, Akihisa Tamura

研究成果: Article

19 被引用数 (Scopus)

抄録

In the theory of two-sided matching markets there are two standard models: (i) the marriage model due to Gale and Shapley and (ii) the assignment model due to Shapley and Shubik. Recently, Eriksson and Karlander introduced a hybrid model, which was further generalized by Sotomayor. In this paper, we propose a common generalization of these models by utilizing the framework of discrete convex analysis introduced by Murota, and verify the existence of a pairwise-stable outcome in our general model.

本文言語English
ページ(範囲)950-970
ページ数21
ジャーナルDiscrete Applied Mathematics
154
6
DOI
出版ステータスPublished - 2006 4 15

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「A general two-sided matching market with discrete concave utility functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル