A Hilbertian Projection Approach with Dictionary Dividing Strategy: Accelerating Nonlinear Estimation Algorithm with Multiscale Gaussians

Masaaki Takizawa, Masahiro Yukawa

研究成果: Conference contribution

抄録

A novel dictionary dividing scheme for online non-linear estimation algorithms with multiscale Gaussians is pro-posed to perform a projection in an appropriate reproducing kernel Hilbert space. The proposed dictionary dividing strategy mitigates the in equivalence of the norm of multiscale Gaussians, which leads to degradations of adaptation speed for certain Gaussians. Based on a Hilbertian projection with the dictionary dividing strategy, a fast nonlinear estimation algorithm, which adapts scales and centers of Gaussians as well as its heights, is presented. The numerical example shows that using the Hilber-tian projection with the proposed dictionary dividing scheme ameliorates the adaptation speed of Gaussian heights.

本文言語English
ホスト出版物のタイトル2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2077-2084
ページ数8
ISBN(電子版)9789881476890
出版ステータスPublished - 2021
イベント2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Tokyo, Japan
継続期間: 2021 12月 142021 12月 17

出版物シリーズ

名前2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021 - Proceedings

Conference

Conference2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2021
国/地域Japan
CityTokyo
Period21/12/1421/12/17

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理
  • 器械工学

フィンガープリント

「A Hilbertian Projection Approach with Dictionary Dividing Strategy: Accelerating Nonlinear Estimation Algorithm with Multiscale Gaussians」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル