A Neural Network-Based On-device Learning Anomaly Detector for Edge Devices

Mineto Tsukada, Masaaki Kondo, Hiroki Matsutani

研究成果: Article


Semi-supervised anomaly detection is an approach to identify anomalies by learning the distribution of normal data. Backpropagation neural networks (i.e., BP-NNs) based approaches have recently drawn attention because of their good generalization capability. In a typical situation, BP-NN-based models are iteratively optimized in server machines with input data gathered from edge devices. However, (1) the iterative optimization often requires significant efforts to follow changes in the distribution of normal data (i.e., concept drift), and (2) data transfers between edge and server impose additional latency and energy consumption. To address these issues, we propose ONLAD and its IP core, named ONLAD Core. ONLAD is highly optimized to perform fast sequential learning to follow concept drift in less than one millisecond. ONLAD Core realizes on-device learning for edge devices at low power consumption, which realizes standalone execution where data transfers between edge and server are not required. Experiments show that ONLAD has favorable anomaly detection capability in an environment that simulates concept drift. Evaluations of ONLAD Core confirm that the training latency is <formula><tex>$1.95\times \sim 6.58\times$</tex></formula> faster than the other software implementations. Also, the runtime power consumption of ONLAD Core implemented on PYNQ-Z1 board, a small FPGA/CPU SoC platform, is <formula><tex>$5.0\times \sim 25.4\times$</tex></formula> lower than them.

ジャーナルIEEE Transactions on Computers
出版物ステータスAccepted/In press - 2020 1 1


ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Hardware and Architecture
  • Computational Theory and Mathematics