A new nonformal noncommutative calculus: Associativity and finite part regularization

Hideki Omori, Yoshiaki Maeda, Naoya Miyazaki, Akira Yoshioka

研究成果: Chapter

抄録

We interpret the element 1/2ih (u * v + v * u) in the generators u, v of the Wey1 algebra W2 as an indeterminate in N+ 1/2 or -(N+ 1/2), using methods of the transcendental calculus outlined in the announcement [13]. The main purpose of this paper is to give a rigorous proof for the part of [13] which introduces this indeterminate phenomenon. Namely, we discuss how to obtain associativity in the transcendental calculus and show how the Hadamard finite part procedure can be implemented in our context.

本文言語English
ホスト出版物のタイトルDifferential Geometry, Mathematical Physics, Mathematics and Society Part 1
ページ267-297
ページ数31
321
出版ステータスPublished - 2008 10 1

出版物シリーズ

名前Asterisque
番号321
ISSN(印刷版)0303-1179

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A new nonformal noncommutative calculus: Associativity and finite part regularization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル