A proof-theoretic study of the correspondence of classical logic and modal logic

H. Kushida, M. Okada

研究成果: Article査読

7 被引用数 (Scopus)

抄録

It is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints� result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof.

本文言語English
ページ(範囲)1403-1414
ページ数12
ジャーナルJournal of Symbolic Logic
68
4
DOI
出版ステータスPublished - 2003 12

ASJC Scopus subject areas

  • 哲学
  • 論理

フィンガープリント

「A proof-theoretic study of the correspondence of classical logic and modal logic」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル