A refined Kurzweil type theorem in positive characteristic

Dong Han Kim, Hitoshi Nakada, Rie Natsui

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We consider a Kurzweil type inhomogeneous Diophantine approximation theorem in the field of the formal Laurent series for a monotone sequence of approximation. We find a necessary and sufficient condition for irrational f and monotone increasing (ℓn) that there are infinitely many polynomials P and Q such that |Qf-P-g|<q-n-ℓn, n=deg(Q) for almost every g. We also study some conditions for irrational f such that for all monotone increasing (ℓn) with Σq- ℓn=∞ there are infinitely many solutions for almost every g.

本文言語English
ページ(範囲)64-75
ページ数12
ジャーナルFinite Fields and their Applications
20
1
DOI
出版ステータスPublished - 2013 3月
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 代数と数論
  • 工学(全般)
  • 応用数学

フィンガープリント

「A refined Kurzweil type theorem in positive characteristic」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル