A theorem on the average number of subfaces in arrangements and oriented matroids

Komei Fukuda, Akihisa Tamura, Takeshi Tokuyama

研究成果: Article査読

2 被引用数 (Scopus)

抄録

It is known that for simple arrangements in the d-dimensional Euclidean space RdThe average number of j-dimensional subfaces of a k-dimensional face is less than {Mathematical expression}. In this paper, we show that this is also true for all arrangements in Rd and for all oriented matroids, and we give combinatorial proofs.

本文言語English
ページ(範囲)129-142
ページ数14
ジャーナルGeometriae Dedicata
47
2
DOI
出版ステータスPublished - 1993 8月 1
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「A theorem on the average number of subfaces in arrangements and oriented matroids」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル