Accelerating ODE-Based Neural Networks on Low-Cost FPGAs

Hirohisa Watanabe, Hiroki Matsutani

研究成果: Conference contribution

抄録

ODENet is a deep neural network architecture in which a stacking structure of ResNet is implemented with an ordinary differential equation (ODE) solver. It can reduce the number of parameters and strike a balance between accuracy and performance by selecting a proper solver. It is also possible to improve the accuracy while keeping the same number of parameters on resource-limited edge devices. In this paper, using Euler method as an ODE solver, a part of ODENet is implemented as a dedicated logic on a low-cost FPGA (Field-Programmable Gate Array) board, such as PYNQ-Z2 board. As ODENet variants, reduced ODENets (rODENets) each of which heavily uses a part of ODENet layers and reduces/eliminates some layers differently are proposed and analyzed for low-cost FPGA implementation. They are evaluated in terms of parameter size, accuracy, execution time, and resource utilization on the FPGA. The results show that an overall execution time of an rODENet variant is improved by up to 2.66 times compared to a pure software execution while keeping a comparable accuracy to the original ODENet.

本文言語English
ホスト出版物のタイトル2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ88-95
ページ数8
ISBN(電子版)9781665435772
DOI
出版ステータスPublished - 2021 6
イベント2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - Virtual, Portland, United States
継続期間: 2021 5 17 → …

出版物シリーズ

名前2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021 - In conjunction with IEEE IPDPS 2021

Conference

Conference2021 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2021
国/地域United States
CityVirtual, Portland
Period21/5/17 → …

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 情報システム

フィンガープリント

「Accelerating ODE-Based Neural Networks on Low-Cost FPGAs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル