Active Traversability Learning via Risk-Aware Information Gathering for Planetary Exploration Rovers

Masafumi Endo, Genya Ishigami

研究成果: Article査読


Traversability prediction enables safe and efficient autonomous rover operation on deformable planetary surfaces. Revealing spatial distribution from terrain geometry to rover slip behavior is key to assessing prospective traversability, but is hindered by insufficient in situ measurements on hazardous states due to conservative rover traverses. To achieve a more accurate prediction, this letter proposes a framework that actively learns latent traversability by exploring informative terrain under the constraints of stochastic rover slip. With a Gaussian process (GP) modeling the spatial distribution, we devise an iterative two-stage framework that gradually refines the model estimation, combining risk-aware informative path planning and GP updates by taking in situ measurements. The path planning stage employs our designed sampling-based algorithm to generate informative trajectories with fault-tolerant risk inference, while the GP is cautiously updated with traverse data to avoid rover immobilization. Chance constraint formulation is exploited in the framework to infer the stochastic reachability of informative regions. Through GP estimates reducing uncertainty, the algorithm incrementally reaches informative yet hazardous states along feasible trajectories. Simulation studies in rough terrain environments demonstrate that the proposed framework gathers informative traverse data while averting rover stuck situations to estimate the latent traversability model.

ジャーナルIEEE Robotics and Automation Letters
出版ステータスPublished - 2022 10月 1

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 生体医工学
  • 人間とコンピュータの相互作用
  • 機械工学
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用
  • 制御と最適化
  • 人工知能


「Active Traversability Learning via Risk-Aware Information Gathering for Planetary Exploration Rovers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。