Adaptive power management in solar energy harvesting sensor node using reinforcement learning

Shaswot Shresthamali, Masaaki Kondo, Hiroshi Nakamura

研究成果: Article査読

36 被引用数 (Scopus)

抄録

In this paper, we present an adaptive power manager for solar energy harvesting sensor nodes. We use a simplified model consisting of a solar panel, an ideal battery and a general sensor node with variable duty cycle. Our power manager uses Reinforcement Learning (RL), specifically SARSA(λ) learning, to train itself from historical data. Once trained, we show that our power manager is capable of adapting to changes in weather, climate, device parameters and battery degradation while ensuring near-optimal performance without depleting or overcharging its battery. Our approach uses a simple but novel general reward function and leverages the use of weather forecast data to enhance performance. We show that our method achieves near perfect energy neutral operation (ENO) with less than 6% root mean square deviation from ENO as compared to more than 23% deviation that occur when using other approaches.

本文言語English
論文番号181
ジャーナルACM Transactions on Embedded Computing Systems
16
5s
DOI
出版ステータスPublished - 2017 9月
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ

フィンガープリント

「Adaptive power management in solar energy harvesting sensor node using reinforcement learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル