抄録
Nuclear factor kappa B (NF-κB) is a transcription factor that is known to regulate apoptosis when cells are exposed to DNA-damaging agents such as ionizing radiation and cytotoxic drugs. We sought to determine if inhibition of NF-κB could enhance radiosensitivity in human colon cancer cells in vitro and in vivo. To inhibit NF-κB activation specifically, we constructed a recombinant adenovirus vector expressing a truncated form of the inhibitor protein IκBα (IκBαΔN) that lacks the phosphorylation sites essential for activation of NF-κB, and transfected two human colon cancer cell lines (HT29 and HCT15) with this vector. In vitro colony-forming assays revealed that the overexpression of the stable IκBα by AXIκBαΔN infection significantly suppressed cell growth after irradiation in both cell lines as compared to infection with a control vector, AxLacZ. Treatment with AxIκBαΔN and irradiation successfully inhibited the growth of HT29 xenografted subcutaneous tumors in nude mice with an 83.8% volume reduction on day 38 as compared to the untreated tumors. Furthermore, it was demonstrated that apoptosis was increased by adenovirus-mediated gene transduction of IκBαΔN in vitro and in vivo. These results indicated that inhibition of NF-κB could enhance radiosensitivity through an increase in radiation-induced apoptosis. We believe that radio-gene therapy using adenovirus-mediated gene transduction of IκBαΔN could be an attractive candidate as a treatment strategy for colorectal cancer.
本文言語 | English |
---|---|
ページ(範囲) | 745-750 |
ページ数 | 6 |
ジャーナル | Cancer science |
巻 | 94 |
号 | 8 |
DOI | |
出版ステータス | Published - 2003 8月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- 腫瘍学
- 癌研究